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Abstract

The work of the present thesis deals with the Multiple Extended Object Track-
ing (MEOT) problem in data fusion. As suggested by the name, such a
problem amounts to jointly estimating the state of multiple extended ob-
jects, where the attribute extended means that each object can generate an
arbitrary number of different measurements.

More specifically, in the context of this work, the MEOT problem is
studied by taking into account the fact that the great amount of available
measurements allows one to estimate not only the kinematic state of an
object, but also its shape. As a result, two major difficulties have been
faced: the first one consists of estimating how many objects are present
in the surveilled scene and where there are located; the second consists of
estimating the shape of each present object.

A Bayesian viewpoint is adopted, according to which the set of the ob-
jects states is modelled as a random finite set (RFS). In order to get a feasible
solution from the point of view of the computational burden, the RFS of the
tracked object is not represented in terms of its probability density function,
but rather on first-order approximation known in the literature as Probabil-
ity Hypothesis Density (PHD). The resulting algorithm, called PHD filter,
is derived in the first part of the thesis and resolves the first difficulty of
the MEOT problem, i.e. the joint estimation of the kinematic states of an
unknown number of extended objects.

The second part of the thesis deals with the problem of estimating the
shape of a single extended object, whose solution is consequently recast into
the PHD filter formalism. In this part two different algorithms are discussed,
namely the Gaussian inverse Wishart (GIW) filter and the Multiplicative
Error Model - Extended Kalman Filter Star (MEM-EKF*) filter. The GIW
filter can be regarded as a first simple solution to the shape estimation prob-
lem, while the MEM-EKF* filter is an evolution of the GIW filter aiming to
provide better performances. Based on the main ideas of the GIW and the
MEM-EKF* filters, a new solution, called by the author as Lambda Omicron
- Multiplicative Error Model (LO-MEM) filter, is devised in the final chapter
of the thesis.



Sommario

Il presente lavoro di tesi riguarda un problema di data fusion noto col nome
di Tracciamento di Oggetti Estesi Multipli (TOEM). Come suggerito dal
nome, tale problema consiste nella stima congiunta degli stati di molteplici
oggetti estesi, dove il termine esteso indica che ogni oggetto ha la possibilita
di generare un numero arbitrario di differenti misure.

In particolare, in questo lavoro il problema TOEM e studiato tenendo
conto del fatto che I’elevato numero di misure disponibili permette di stimare
non solo lo stato cinematico di un oggetto, ma anche la forma. Conseguente-
mente, nel presente lavoro sono affrontate due difficolta principali: la prima
consiste nella stima del numero di oggetti presenti nella scena e nella loro
localizzazione; la seconda consiste nella stima della forma di ogni oggetto
presente nella scena.

La soluzione considerata adotta un punto di vista Bayesiano, secondo
il quale I'insieme degli stati degli oggetti ¢ modellato da un insieme finito
aleatorio (RFS = Random Finite Set). Nell’ottica di ottenere una soluzione
computazionalmente accettabile, il RFS degli stati degli oggetti non & rap-
presentato in termini della sua densita di probabilita, bensi in termini della
rispettiva approssimazione al primo ordine nota come Probability Hypothe-
sis Density (PHD). L’algoritmo risultante, chiamato filtro PHD, ¢ derivato
nella prima parte della tesi e risolve la prima grande difficolta del problema
TOEM, i.e. la stima congiunta degli stati di un numero non precisato di
oggetti estesi.

La seconda parte della tesi affronta il problema della stima della forma
di un singolo oggetto esteso, la cui soluzione ¢ conseguentemente riformulata
nel formalismo del filtro PHD. In questa parte sono discussi due algoritmi,
che sono rispettivamente il filtro Gaussian inverse Wishart (GIW) ed il filtro
al Modello di Errore Moltiplicativo - filtro di Kalman Esteso Stella (MEM-
EKF*). 1l filtro GIW puo essere visto come una prima semplice soluzione al
problema della stima di forma, mentre il fililro MEM-EKF* ¢ un’evoluzione
del filtro GIW ideata per ottenere prestazioni migliori. Sulla base delle
idee principali dei filtri GIW e MEM-EKF*, una nuova soluzione, chiamata
dall’autore filtro Lambda Omicron - Modello di Errore Moltiplicativo (LO-
MEM), & sviluppata nel capitolo finale della tesi.
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Chapter 1

Introduction

1.1 Objective and thesis structure

One of the crucial and most interesting problems in control systems engi-
neering is the estimation of the state of a dynamic system. In fact, the usual
solution adopted to control a dynamic system is to define the controller as
a suitable state feedback. However, usually the state is unknown, therefore
one must provide a sufficiently robust estimate of the state to the controller.

A special instance of the state estimation problem is called tracking,
which consists in the estimation of the state of a moving object, for example
an aircraft, based on remote measurements, provided by one or more sensors,
for example a radar station, typically in a discrete time fashion.

In 1960, Kalman published a paper describing its solution to the state es-
timation problem, the Kalman filter, which can be considered as the starting
point of the modern tracking systems. Despite its undoubted success in the
vast majority of the state estimation problems, today the Kalman filter does
not provide a practically usable solution to the tracking problem because of
its basic assumptions that, in this special estimation context, read as follows:

¢ (single object assumption) at each time step, there is one and only
object present in the observed scene;

¢ (point object assumption) at each time step, the object generates
one and only one measurement.

On the one hand, the first assumption is not valid due to the fact that, in
general, the scene observed by the sensors is populated by an unknown and
time varing number of objects due to the fact that such objects can enter or
leave the scene. Moreover, the scene can contain also false-objects detectable



2 Introduction

by the sensors. For example, in air surveillance problem one can be interested
in tracking airplanes (true-objects) but not helicopters (false-objects).

On the other hand, the second assumption is no longer valid nowdays
since the advance in sensor technology which has led to an increment into
resolution capabilities, that is the modern sensors, for example the LIDAR
sensors, can observe simultaneously multiple different points of the tracked
object. Thanks to the amount of measurements, it is possible to estimate
both the position of the object, represented by a point regarded as the center,
and the shape of the object, represented by an ellipsoid (or, more often as
an ellipse if the tracking problem is defined in a bidimensional enviroment)
that encodes the extensions and the orientation of the object.

The objective of this thesis is to present three different tracking algo-
rithms that address the two limitations of the Kalman filter.

The first limitation is overtaken by considering the simplest solution pro-
vided by Mahler’s FISST (Finite Set Statistics): the so-called PHD (Proba-
bility Hypotesis Density) filter. This argument is discussed in the first part
of the thesis (chapters 2, 3, 4, 5). The second limitation is overtaken by
discussing in the second part of the thesis (chapters 6, 7, 8, 9) three different
approaches to the tracking problem for extended objects:

1. the GIW (Gaussian Inverse Wishart) filter, which is the first filter in the
literature, introduced by Koch between 2006 and 2011, that handles
the problem of estimating the kinematic state and the shape of the
tracked object;

2. the MEM-EKF* (Multiplicative Error Model - Extended Kalman Filter
Star) filter, an evolution of the GIW filter, developed by Baum et al.
between 2012-2019, that permits to explicitly separate the estimation
of the extensions from the estimation of the orientation of the tracked
object;

3. the LO-MEM (Lambda Omicron - Multiplicativer Error Model) filter,
that is a new filter based on the MEM-EKF* proposed by the author
in order to estimate the state of objects showing high manouvering be-
haviours, i.e. that change rapidly their position and orientation during
time.

The multi-object trackers discussed in this thesis are nothing but the
PHD implementations of the former single object trackers, specifically:

1. the GIW-PHD filter (Granstorm et al., 2012);

2. the PHD MEM-EKF* (Baum et al., 2017);
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3.

the LO-MEM PHD (developed in this work).

Finally, the performance of the trackers are compared by means of nu-
merical simulations in the final chapter 10.

1.2 Contributions

The main contribution is the LO-MEM PHD filter, a new multi-object
tracker that tries to improve the estimation performance of the MEM-EKF*
filter in complex scenarios where the multiple objects move in the scene by
rapidly changing in time their positions and orientations.

The LO-MEM PHD filter differs from the MEM-EKF* PHD filter under
the following aspects:

assumes that every object follows the so-called unicycle motion model,
that is one object can move only along the orientation direction or, in
other words, cannot move along its lateral direction. Due to this fea-
ture, the LO-MEM filter loose of generality with respect of the MEM-
EKF* filter;

the state of an object is represented in polar coordinates rather than a
Cartesian coordinates. This feature allows to encode explicitly in the
estimation process the former property of the unicycle motion model;

the prediction step is based on a new non-linear motion model, called
Lambda-Omicron motion model, rather than a linear motion model.
This feature leads to a more accurate estimation of the object orienta-
tion;

the correction step is computed according to a new measurement vec-
tor, which allows to perform the correction in one operation (rather
than multiple operations). Thanks to this feature, the new orrection
step is less computational demanding and solves some minor problems
of the MEM-EKF* corrector;

the model of the measurement likelihood, which plays a central role in
the PHD implementation.

1.3 Preliminary discussion on the PHD filter

The PHD filter, the central algorithm of this thesis, can be seen as an evolu-
tion of the so called Bayes’s filter. The Bayes filter is a generalization of the
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Kalman filter that allows to estimate the state of stochastic systems that are
not linear in their dynamics or characterized by Gaussian uncertainties.

The PHD filter, conversly, is an advanced approximation of the so-called
multiobject Bayes filter, which generalizes the Bayes filter (referred as sin-
gle object Bayes filter) because the latter can handle the estimation of the
state of single object (mathematically represented by a dynamic systerrEI)
while the former can handle the estimation of the states of multiple objects
simultaneously.

In order to clarify the mathematics behind the PHD filter, in the next
two subsections are briefly discussed the single object and multiobject Bayes
filters.

1.3.1 Single object Bayes filter

In the single object tracking (SOT) problem, at the time step k one wants
to estimate the value of the actual state X € R™ of one object (which
can generate only one measurement per time step) given the set yi.x =S
{y1,...,yx} of the measurements provided by a sensor up to the actual time
step k.

The conceptual solution of the SOT problem is represented by the (single
object) Bayes filter, which is a recursive algorithm relying on the following
basic concepts:

e measurement model hy(-,-) - a function that describes how the mea-
surements are generated by the considered sensor;

e motion model fi(-,-) - a function that describes what the future value
of the object state will be;

e likelihood function ¢(-) - a probabilistic representation of the mea-
surement model;

e transition density ¢j41)x(-|-) - a probabilistic representation of the mo-
tion model;

o filtered density pyi(-) - a probabilistic representation of the actual
value of the object state based on the set of measurement actually
available;

e predicted density pj1|x(-) - a probabilistic representation of the future
value of the object state based on the set of measurement actually
available;

Ifor this reason the terms object and dynamic system are considered synonyms in this
work
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e optimal estimate &3 - a point in the state space that estimates the
actual value of the object state;

e estimator covariance Py, - a matrix that describes the accuracy of the
optimal considered estimate.

Briefly speaking, the derivation of the (single object) Bayes filter consists
essentially in the following procedure:

e step 1: define the measurement and motion models according to the
sensor considered and the time-behaviour of the object under study

Tpy1 = fr(zr, wi)
Y = hi(xk, vi)

(1.1)

here zj and xp41 are the (real) states of the objects at time k and
k + 1, yi is the measure observed at time k by the sensor and wy,
vk, are noise signals (typically stationary) characterized by the PDFs

pw () and py (-);

e step 2: find the likelihood function and the transition density from the
measurement and motion models according to the standard formulas
provided by the probability calculus, i.e.

pv (hy (25, y1))
detJhk]wk7h_1($k7yk)

pw (fi (Wi, T41))
det']fk]rk,f’l(wk,rwl)

Uk (ylz) £ ply|or) = [
(1.2)

Pri1jp(z|w) £ p(Tpyrwy) = [

here h; *(-) and f;'(-) are the inverse functions of hx(-) and fi(-),
while detJy,, and detJy, are the Jacobian determinants of hy(-) and

Tr();

e step 3: find the filtered and predicted densities from the likelihood
function and the transition density according to the Bayes and the
Chapman-Kolmogorov equations, i.e.

Prje(T) & . (y|2)prjp—1 ()
. J k(Y€ prir—1(§) d€

Pryar(z) = /<Pk+1\k(93|w)pk|k(w) dw

here py,—1(-) is the predicted density at time k — 1;
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e step 4: extract from the filtered density the optimal estimate by min-
imizing the risk Rc,[], where Cj : R?*" — RT is the choosen cost
function, i.e.

Ty 2 arg mmin Re, [prk] (1.4)

with
Re, [pupe] 2 / C(ar, w)pag i (w)duw (15)

1.3.2 Multiobject Bayes filter

In the more general and challenging multiobject tracking (MOT) problem,
the objective is to estimate the state of several objects given severals mea-
surements provided by several sensors (where, in general, every object can
generate more than one measurement per time step). In this case, if at
the time step k£ the number of objects is N and the number of mea-
surements is my, the MOT problem consists of estimate simultaneously
the values of the states X1, ..., Xg n, given the set of measurements
Yi:my,my £ Ui dviah, - Uyt

Note that in the MOT problem the numbers Nj is a random integer
(eventually zero), while my, is a realization of a second random integer M}
(eventually zero), in fact:

e N is random because it is not known with certaintly how many ob-
jects are actually present in the scene supervised by the sensors. Such
uncertaintly is a consequence of the fact that objects actually present
in the scene can leave that scene in the future, while objects actually
non present in the scene can enter that scene in the future. In the
Bayesian reasoning the uncertainties are represented in probabilistic
terms, so Vi is random and, in principle, can assume all the possible
values ny =0,1,2,...;

e M, is random because a sensor may not read any measurement (be-
cause the sensor can be occluted) or may read, in addition to the
measurements generated by the objects in the scene, several false mea-
surements (due to the presence of false objects in the scene). As a
result, M}, can assume all the possible values m; = 0,1,2,... and it is
modelled as a random variable likewise Ny;

A possible, and convenient, approach to resolve the MOT problem is the
following:

1. collect the actual single object states in the state set

Xe 2 {Xk1,-, XNy } (1.6)
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and collect the actual measurements observed by the sensors in the
measurement set

Yk £ {yk,17~"7yk,mk} (17)

2. think the starting MOT problem as a non-ordinary SOT problem
where at the time step k& one wants to estimate the value of the actual
state X of one meta-object given the set yi., = {yi,...,yx} of meta-
measurements readed by a meta-sensor up to the actual time step.

Unfortunately X; and y are sets rather than wvectors, and this means that
there are several problem to resolve, for example

e the filtered and predicted densities are not defined, since it is not de-
fined the concept of probability density of a set;

e the likelihood and the transition density are not defined, since, once
again, these two terms are in this case probability densities of sets, a
concept not defined;

e the optimal estimate is not defined, since the filtered density is not
defined.

The finite set statistics (FISST) is a theory that fill up all theese theo-
retical gaps by introducing the concept of random finite set. The main ideas
behind FISST are the following:

e the introduction of the concept of RFS allows to define properly a con-
cept of PDF for sets, called multiobject PDF (MPDF) in what follows,
and a concept of integration over the space of MPDFs, called set inte-
gral in what follows. As a result, in FISST the filtered and predicted
densities are well defined and denoted as py|x({-}), Prs1j({-});

e due to the definition of set integral, the Bayes equation and the Chapman-
Kolmogorov equation are appliable in the new context of RFSs

N Cre(YX) Pk -1 ()
J e (yIw)prji—1(w) dw

Prrik(x) £ /@k+1|k(X\W)Pk\k(W) dw

pk|k(x)
(1.8)

where the usual definition of integration is replaced by the definition
of set-integral;

e given a generic filtered density py({-}), FISST provides also different
procedures to extract an optimal estimate X; (which is a finite set of
vectors in R™ rather than a single vector in R™).
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The multiobject Bayes filter is an algorithm that propagates in time
the predicted and filtered densities pyx({-}), Pr+1x({-}) by computing the
Bayes and Chapman-Kolomogorov equations and produces the estimates by
processing the filtered densities py({-})-

1.3.3 Motivation for the PHD filter

The multiobject Bayes filter is computational intractable even in the sim-
ple applications. The PHD filter is an algorithm that solves this problem
by propagating in time not the predicted and filtered densities py({-}),
Pr+1]k({-}) but rather the predicted and filtered probability hypothesis densi-
ties Dyi(+), Dyy1)k(+), which are standard functions of the type f : R™ — RT
that, despite this is not completely true, can be regarded as rough approxi-
mations of pyye({-}), pre1e({-}).

However, the analitical computation of Dy (-), Dyy1|x(-) is not straight-
forward and requires advanced tools, the so-called probability genereting
functionals (PGFLs). For this reason, the entire third chapter of the thesis
is devoted only to the PGFLs and fourth chapter to the derivation of the
standard PHD filter (i.e., the computation of Dy (-), Dy41jx(-)). The fifth
chapter discusses the derivation of the PHD filter for extended objects.



Part 1

PHD filters






Chapter 2

Standard multiobject calculus

2.1 Summary

The idea of FISST is to define the multiobject Bayes filter as a single object
Bayes filter that deals with random finite sets, a new concept of random
variable, rather than random vectors. Hence the objective of FISST is to
recast in the random finite set enviroment the single object Bayes filtering
theory. In order achieve this goal, FISST develops the so called multiobject
calculus, which is the extension of the ordinary multivariate calculus to the

random finite set enviroment.
The multiobject calculus consist in the following 4 steps:

e step 1: define a probabilistic model (py,S), which is clarified by the
following definition 1, for random finite sets;

step 2: translate the probabilistic model (py,S) that defines a ran-
dom finite set into a more convenient function fx(-), called belief mass
function. The belief mass function Sx(-) is a compact probabilistic de-
scriptor of X equivalent to the model (pn,S). Equivalent means that
it is possible to recover (py(:),S) from PBx() and viceversa. The belief
mass function Bx(-) is the random finite set counterpart of the ordi-
nary probability mass function (PMF) Px(-) (which is the distribution
function of a random vector X).

step 3: introduce a new concept of integral, the so called set integral,
that permits to integrate functions of random finite sets. Basing on

the definition of set integral, the belief mass function can be expressed

11



12 Standard multiobject calculus

as the set integral of a special multiobject function px({-})
Bx(S) = / px(x) dx VS e OR") (2.1)
s

equation (3>E| is the random finite set counterpart of the much more
familiar equation

Pxﬁﬂziépxﬁ)dt VS € BRM) (2.2)

thus the multiobject function px({-}) is the random finite set counter-
part of the ordinary PDF px(-), and for this reason is called multiobject
PDF.

e step 4: introduce a new concept of differentation, the so called Lebesgue-
differentation, that permits to extract, without loosing any informa-
timﬂ about a random finite set, the multiobject PDF px({-}) from a
belief mass function Ox(-)

_dpx(9)
T dx

px(%) Vx € F(R") (2.3)

S=9

equation (5) is the random finite set counterpart of the much more
familiar equation

dPx ()

px(a) = =2

dPX (l‘)
= —" R" 2.4
T Ve (2.4)

S=(—o0,z|"

where Px(-) is the cumulative distribution function (CDF) of X, i.e.
the probability mass function Py (-) restricted to the hyper—intervalﬁ
S = (—o0,z]™

Px(x) 2 Px((—o0,2]™) Vo eR" (2.5)
Due to (3) and (5), the multiobject PDF px({-}) can be regarded as

a probabilistic descriptor of X equivalent to the belief mass function
Bx(-). Moreover, turns out that the multiobject PDF px({-}) is also

Lequations (3), (4), (5) and (6) will be discussed in details in the next sections, for this
reason it is not explained here the notation adopted.

2once again, "without loosing any information” means that it is possible to recover
back the belief mass function from the multiobject PDF.

3the notation (—oco,z]™ is a shorthand for the cartesian product [}, (—o0,z;].
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equivalent to the model (py, S), and this prove the equivalence between
the model (py,S) and the belief mass function Sx(-).

In conclusion, there are 3 equivalent ways to characterize the statistical
properties of a random finite set: the probabilistic model (py,S), the
belief mass function Ox(-) and the multiobject PDF px({-}).

e step 5: define new concept of statistics which summarize in a compact
form the information contained in the multiobject PDF. Such statistics
are the marginal multitarget estimate, the joint multitarget estimate
and the probability hypothesis density. Likewisei n the ordinary do-
main of random vectors, such statistics are not complete probabilistic
desriptors, meaning that it is not possible to recover back the multi-
object PDFs from such statistics (it is only possible to extract such
statistics given the multiobject PDFs). More importantly, this fact
means that there is a loss of information in the extraction of the statis-
tics from the multiobject PDFs, and this can be a problem in complex
scenarios (for example, when the signal-to-noise ratio is low). This fact
will be proved by the so called inversion formula.

2.2 Random finite sets

The ordinary probability theory defines different types of random variables,
for example:

e random integer I: a random variable that draws its instantiations ¢
from the set Z of all integers;

e random number A: a random variable that draws its instantiations
a from the set R of all real numbers;

e random vector X: a random variable that draws its instantiations x
from the Euclidean space R™ of all real-valued vectors;

In the MOT is involved a new and more sophisticated concept of random
variable, that is:

e random finite set X: a random variable that draws its instantiations
x from the set F(R™) of all finite subsets of the Euclidean space R".

For example, possible instantiations of a random finite set X are the following:
x =g, x={x}, x={x1, 22}, x = {21, 22,23} and so on, where the elements
Z1,T3,..., are ordinary random vectors belonging to R™. In short, a random
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finite set is essentially a set with random cardinality, which can be zero as
well, composed by random vectors.

FISST assumes a simplifying hypothesis that prevents some mathemat-
ical issues: the molteplicity of the elements of a random finite set is always
unitary, i.e. are not allowed repetead elements in random finite sets. This
hypothesis is not restrictive because the elements of a random finite set are
vectors drawn from the continuos space R™, so it is almost impossible that
two elements in a random finite set can be identical.

To gain intuition about what is a random finite set, one can think about
the following algorithm which explains how to sample a random finite set:

1. initialize x = @;
2. generate an integer n according to some finite discrete density py(-);

3. if n > 0 then:

(a) generate the real-valued vectors 1, x2, ..., z, in R™ according
to some joint symmetric PDF px, x,...x,( -0 5);
(b) include the vectors xq, za, ..., &, in x: x <= xU{x,22,...,2,}.

Note that the attributes finite and symmetric describing the densities
pn () and px, x,,...x, (- .,) have specific meanings:

e finite means that py(-) vanishes as the cardinality considered increase,
ie. lim, o pn(n) = 0. This is because a random finite set is a set
composed by a finite number of elements, so it is not allowed the case
[X] = oo;

e symmetric means that le,szan(" “y...,) is invariant with respect
to permutations of it arguments, i.e.

PXx1,Xs,.., X, (1'17 Z2,... 7x7]) =PX1,Xa,.., X, (xrr(l)v Lo(2)y .- - 7x¢7(n))
V permutations o(+) '
(2.6)
For example, if 7 = 2 then the symmetry states that it is true
DX, X, (71, T2) = px, X, (T2, 71). (2.7)

This is because a random finite set is a collection of unordered elements,
in the sense that, for example, {z2, x5, 21} and {x1, 29, x3} are different
representations of the same set. In this case, since

{w2, 23,21} = {w1, 02, 73} (2.8)
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it is necessary that

PX1,X2,X5 (%2, 3, 1) = Px,, X0, X5 (1, T2, T3) (2.9)

so that the PDF px, x, x, (-, -, -) must be symmetric, i.e. can be written
as

pxl,x2,...,xn($1,9€2,~-~,9€n) - PX,,Xo,..., Xn(%u),%(z)w-,%(n))

(2.10)
where px, x,,...x, (To(1), To(2), - - - » To(y)) 18 @ generic PDF (potentially
non-symmetric) and the summation is taken over all 5! possible per-
mutations o(-) of the arguments z1, ..., ,. Note that the factor 1/7!
guarantees that px, x,.. x,(z1,%2,...,7,) integrates to unity, while
the summation over all the permutations guarantees that the joint PDF
PX1,Xs,... X, (T1, T2, ..., y) is symmetric.

Although, as prescribed by the assiomatic theory of probability, a random
finite set is rigorously defined as a measurable map X : Q — F(R™), where

) is some sample space in an underliyng probability space (92, X, P);

F(R™) is the hyperspace of finite subsets of R™;

it is possible to give a more intuitive and equivalent definition based on the
previous intuitive algorithm.

Definition 1. A finite set X = {X1, Xs,..., Xy} C R" is called random
finite set (RFS) over R™ if and only if:

the cardinality N is a random integer, characterized by a finite discrete
density py : N — [0,1] called cardinality density;

for all n such that py(n) > 0, the elements X, X»,..., X, € R" are
random vectors, characterized by a symmetric joint PDF
a1 .
pX1,X2,..‘,X7, (.’L'l, X2, ... 7xn) = ﬁ Zle,Xz,u.,XT, (xa’(l)7 $0(2)7 cee Jxo'(n))
: g

(2.11)
on R™*" called spatial density.

An RFS is therefores completely characterized by a finite discrete density
pn(-) and a family S = {Px1,x0,.x, (555 -+ o5 ) Ippw (>0 of PDFs or, more
coincisely, by a couple (py,S), referred in this document as the model of the

RFS.
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2.3 Belief mass functions

The central set function of the FISST is the-so called belief mass function
(BMF)
Bx(S)EP(XCS) VSeORY (2.12)

where O(R™) is the class of open subsets of R” and P : 3 — [0, 1] is the un-
derliyng probability measure. Note the difference between X and S: despite
the fact both X and S are subsets of R™, the former is a finite subset of R",
while the second is a continuos (i.e. non-countably infinite) subset of R™.

The BMF is the probability of the event X C S or, in simpler terms, the
probability that the outcome x of X is completely contained in a open region
of interest S C R™.

It turns out immediately that the BMF is a direct generalization of the
probability mass function (PMF) of a random vector. In fact, if the RFS X
reduces to a random vector X then

Bx(S) = P({X} C §) =P(X C §) =P(X € $) 2 Px(S) VS ¢ OR")
(2.13)
It is possible express the BMF in a factorized formula. Definition 1
suggests the following two facts:

e with probability pn(n), the RFS X is composed by 7 vectors Xj, ...,
X, i.e. its cardinality |X| is exactly equal to 7, so

P([X] =n) = pn(n) (2.14)

s

e assuming |X| = 7, the probability of the event X C .S, denoted concisely
as Bxy(S) £ P(X C S||X| = n), is the probability of the event 'Xj,
Xo,. .., X, are simultaneously in the region 5", whichis Px, x,... x, (S).
Consequently hold the following

'6X|77(S> = ]PXI:X27"')X"I(S)

R (2.15)
= /sn PX1,Xa, X, (1, 22,...,2y,) doy dog -+ day,

where px, x,,..x,("..,-) is the joint PDF of Xy, X, ..., X, and
S denotes the Cartesian product []] ;S = S x S x --- x 5. Note
that, as long as the subset S is in the Borel o-algebra of R (denoted
as B(R™)), the probability measure Bx|,(-) is well defined since it is an
ordinary joint absolute-continue distribution on R™. This fact is not
in contrast with definition (16) (which considers an open subset S of
R™) since O(R™) C B(R™).
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Recalling that IP(+) is a probability measure, the law of total probabilities
can be applied in order to exploit the two aforementioned facts, leading to
the expressions

Bx(S) =B(X C ) = > P(X C S|X| = n) P(IX| = n)
n=0

= Bx(S) pn(n) = pn(0)+
n=0

o0
Z </ PX1,X2,.0, X, (1,22, .., @p) day dzg -+ d$n> pn (1)
n=1 5"
VS e OR")
(2.16)
where it is assumed by convention that Bxo(S5) £ 1, which is reasonable
because, since the empty set @ is by definition a subset of any set S, the

probability fx|o(S) of the event @ C S is unitary regardless of the value of
S.

2.3.1 Independence for RFSs

Let X; and Xs be two independent RFSs with BMFs fx, (-) and fx,(-) re-
spectively. Let X £ X; U Xy be the union between X; and Xo. It is easy to
see that the BMF fx(-) is factorized into the product of the BMFs Sx, ()
and fx,(+). In fact observe

Bx(S) =P(X € 5) =P(Xy UXz € §) =P(Xy, Xz € 5). (2.17)

Thus, due to the independence of X; and Xs, it follows that P(X;,Xs C S) =
]P)(Xl Q S) ]P’(Xl Q S) and

Ax(S) = P(X1, Xz € §) = P(Xy € S)P(Xy € 5) = bx,(5) Bx, (5).  (2.18)
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2.4 Set integrals and multiobject PDF's

According to the expression (2.16), a BMF can be also written also in the
following form

Bx(S) :pN(0)+Z (/ Pxq,..., Xn(xla"'vxn) dxl-ndxn) pN(n)
n=1 \/ 5"
=1
=pn(0)+ ) = Mpxy,..x, (@1, ... 2y) dey - dzy, ) py(n)
ot \Jsn

— 1
:pN(O)—’_Zﬁ/ n'px,...x, (@1, 2y) pN(n) dzy - - - day,
n=1"1" 75"

(2.19)
where this final expression plays a central role in FISST since it leads to the
following definitions.

Definition 2. Let (py,S) be the model of an RFS X, then the finite set
function px : F(R") — RT defined as

pn(0) ifx=0

Upx, (z1) pn (1) if x = {a1}

lI>

px(x)

n!pxl,__ﬂxn(xl, o xg)pn(n)  ifx={x,... 2.}
pn(0) ifx=0
pn (1) Px, (1) if x = {21}

Zg PN(77) ﬁxh..‘,X,, ($0(1)7 e ,:Cc,(n)) if x = {;Cl, - ,xn}
(2.20)
is called multiobject PDF (MPDF) of the RFS X.

Definition 3. Let f: F(R™) — R be a finite set function. The set-integral
of f(-) concentrated over S C R™ is defined as

— 1
/ f(x) dx 2 f(@)+ ) 7'/ fx1,m0, ... xy}) doydag - - -da,,. (2.21)
S =1 n: Jsn
Often the RHS will be expressed in short as

— 1
Zﬁ/g f{z1,22,...,2,}) deyday - - - dayy. (2.22)
=0 1" Jsm
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According to definitions 2 and 3, equations (2.19) are equivalent to

Bx(S) = px (@) + Z % /Sn px({z1, ..., x,}) day - - day,
" (2.23)

=1
é27/ px({z1,... z0}) dwl"'dxné/pX(X) dx
77:077~ Sn S

which expresses the fact that the BMF is nothing but the set-integral of a
MPDF.
2.5 Janossy densities

Let px({-}) be a MPDF. Given the cardinality n = |[X = x|, the function
px({z1,...,zn}) : R > Rt

A pN(O) ifn=0
px(\T1,...,T = i
({ 1 "}) {n!pxl,...,xn(m, cee ,:z:,,)pN(n) ifn >0
_ pn(0) by
ngN(n)ﬁXh»an(xg(l)"“7$0(n)) lfn >0
(2.24)

is called Janossy density of order 1. Equations (2.24) show how to com-
pute the MPDF px({-}) given the model (py,S). On the other hand, it is
also possible to recover the model (py,S) given the MPDF px({-}) by the
following two operations:

e cardinality marginalization: since

/px({xl,...,xn}) daiday - - - dzy = nlpy(n) (2.25)
it follows that the generic value py (1) of the cardinality density is given
by

1
pn(n) = pe /px({:cl, Za,...,&n}) deides - - - day, (2.26)

e spatial marginalization: since

_ xzns . 2}) (2.27)
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it follows from (2.26) that the spatial density px, x,,..x, () can be
computed as

px({z1, 22,...,2,})

= pr({$1,$27 e ,xn}) dzidzy - - - dxn
(2.28)

PX1,Xo2,...,X, (1‘17 Z2,. .. 73377)

Equations (2.26) and (2.28) state that there is a 1-to-1 corrispondance be-
tween the model (py,S) and the MPDF px(:). So in conclusion, one can
switch between the characterizations (py,S) and px(-) without loosing any
information about the considered RFS X. The BMF fx(-) is a third and
equivalent characterization of an RFS X, in the sense that there is a 1-to-1
corrispondance with the MPDF px(-) or the model (py,S): the transforma-
tion px(+) — Bx(+) is provided by the set integration (2.23), on the other hand
the inverse transformation Ox(-) — px(-) is given by a new operation, which
will be defined in the following section, that is the so-called set differentation.

2.6 Set derivatives
2.6.1 Lebesgue differentation
Consider an ordinary PMF Px () on R™ which admits a PDF px(-), so
Px(S) = /px(x) dz VS eB[R") (2.29)
S

the ordinary vector calculus tells that, given Px(S), it is possible to recover
px(+) via the ordinary vectorial differentation of the CDF

_ O"Px(5) (2.30)
S=(—o0,z|" axl e axn S=(—o0,z]™

_ dPx(S5)
 dx

px ()

unfortunately such method is not directy applicable to the RF'S case, because
the result of the ordinary differentation is not a MPDF but an ordinary PDF.
However there is a more powerful procedure to recover px (-), which can be
easily extended to the RFS case, called Lebesgue differentation.

Consider a neighborhood E, of the generic point x € R, for example the
hypercube C, . = {2’ € R" : |2} — x;| < ¢/2 for i = 1,2,...,n} with small
edge € > 0. Since E, = C, . is a simple open subset of R", so Cy . € B(R"),
it holds that

Py (Cy) = /C px(€) de. (2.31)

@, e
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Now observe that, since € is small, its possible to approximate, in the
entire neighborhood B, ., the density px(-) with a constant density with
value px (x)ﬁ

Px(C,) ~ / px(z) d€ = px (z) / d¢ = px(x) €™ (2.32)
Coe Core
Hence it holds that Py(Cy)
X T,€
px(z) == (2.33)
which, if the limit exists, takes the following strong form for € | 0
Px(Cy.e
px(z) = lim PxCae) (2.34)
el0 en

In conclusion, the Lebesgue differentation of Px (-) consists of the following
transformation Px (-) — px(+)

dPx (-1‘) 2 lim Px (Cw,e)
dz el0 en ’

(2.35)

The function dP(fx O is called Radon-Nykodim derivative of Px(:) in

and, by construction, is the PDF px(:). Note that the limit is performed
only from above since the edge € is a non-negative quantity.

The Lebesgue differentation can be expressed in a more general form
which is suitable for the next extension to the RFS domain. Consider a
generic open subset S of R™ such that SN C, . = @, i.e. a set S disjoint
from the small hyper-cube C; .. Thanks to the additivity of the PMF Px(-)
(it is a probability measure), it is possible to write

Px(SUC;) =Px(S) +Px(Cy.e) VSeOR"):SNCre=92 (2.36)
from which it follows immediately that

lim M — lim Px(SU Cz,e) —Px(95)
{0 en el0 en

VS EORY):SNCy. = 2.

(2.37)
Thus the transformation over Px (-)

dPx (S) 2 Jim Px(SU C@-’e) —Px(S)
dz - €l0 en

VSeOR"):SNC .=
(2.38)

4such approximation is valid if Px (-) is sufficiently smooth, for example if it is abso-
lutely continuos
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also returns the density px (-) like (125). In this case, the function dﬂ%ﬁ(')
called generalized Radon-Nykodim derivative of Px(-) in x.

The constraint SNC, . = & can also be seen as a constraint on x given S:
equation (2.38) is valid only when the point z moves outside S. In fact, if
is inside S then for € sufficiently small it holds that C; . C §,s0 SUC, . = S

and equation (2.38) vanishes.

APx(S) o . Px(SUC.) ~ Fx(8)
dx o el0 en

is

VS Hx (2.39)

In the MOT this is limitation because there is a case (see formulas (2.69))
where the differentation needs to be evaluated on S = R", so that equation
(2.39) will be generalized furthermore.

The BMF, likewise the PMF, is an ordinary set function of the type ® :
O(R"™) — R, so the generalized Lebesgue differentation can also be applied
to a BMF leading to the following generalized Radon-Nykodim derivative

dﬁx(S) A lim /BX(S U Cx,s) - ﬁX(S)

" 2.4
dx €l0 en vSFa (240)

2.6.2 Properties of the Lebesgue differentation

The generalized Lebesgue differentation obeys to the ordinary differentation
rules, for example:

e constant rule: let ®(S) = K be a constant set function. Then

dK

— =0 2.41

e (2.41)

e linear rule: let ®(S) = [ f(x) dz be a set function induced by the
density f(-). Then

d®(S)

=) = f(2) (2.42)

note that this fact is true because the generalized Lebesgue differenta-

tion is defined as the operation that extracts the density from a set

function of the type ®(S) = [q f(z) du;

e sum rule: let ®;(5) = [, fi(z) dz, ®5(S) = [ f2(x) dz be set func-
tions induced by the densities f1(-), f2(-) and let a1, a be real numbers.
Then

d[al @1(5) + ag @2(5)] d(pl(S) + ) d@g(S)

dx - o dx @ dx

= a1 fi(z)+az fa()
(2.43)



2.6 Set derivatives 23

in other words, the generalized Lebesgue differentation is a linear trans-
formation of set functions.

e monomial rule: let ®(S) = [ f(x) dz be a set function induced by
the density f(-) and let k be an integer. Then

do(S
WO poep ) _pep—t e
e product rule: let ®,(S) = [; fi(z) dz, ®2(S) = [ fo(x) dz be set
functions inducted by the densities fi(:), f2(). Then

d[‘I)l(S(i:;I)Q(S)] _ dq’(;is) D5(S) + D1(S) d@;x(S) (2.45)

= f1(z) @3(S) + 1(S) fa(x)

e chain rule: let ®(S) = [, f(z) dz be a set function inducted by the
density f1(-) and let ¢(-) be a real valued function. Then
df(21(5))] _ de(y) de(S) _ de(y)

G, f(z).  (2.46)
dx W y—p(s) 4o d y—as)

Note that di(/‘) is the ordinary derivative of the ordinary function ¢(-).

2.6.3 Set differentation

The objective of this section is to define an operation fx(:) — px(-) that
allows to extract the relative MPDF px(-) from a given BMF (x(-). In order
to get the solution to this problem, it is useful to firstly understand how to
recover from the BMF Sx(-) the first 3 Janossy densities px (@), px({z1}),

px({z1,22}).

e Janossy density of order 0: consider the expression
= 1
Bx(S) =px(@) + ) o px({x1,.. . xy}) day - da,.  (2.47)
n=1 1 /5"
By setting S = @ turns out for any 1 > 0 that

/ px({z1,...,2y}) doy ---dxy, =0 (2.48)
oan

thus the zero order Janossy density px (&) is directly given by the BMF
Bx(+) restricted to the empty set &

px(2) = Px(2) (2.49)
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e Janossy density of order 1: the first order derivative (in the gener-

alized Lebsegue sense) of the generic BMF fx(-) is

dpx(s) _ d =
dxxl :dixl px(®)+nz_:1n!/Snpx({xh...,xn}) dgl...dxn‘|

=D L ) |

dl‘l dil‘l
=0 =px({z1})
= 1
+ — — / px({x1,...,x })dxl---dx}
2l day { o " "
(2.50)
as one can show, setting S = @ leads for any n > 1 to
d
T px({x1,...,2,}) day - - - day, =0 (2.51)
1 [Jgn S=o
so that the following relation holds
dgx (S
pu(fm)) = ) (2.52)
Tl |g=p

which expresses the fact that the first order Janossy density px({z1})
is given by the following couple of operations

1. differentation of the BMF fx(-) with respect x1;

2. restriction of the derivative %(') to the empty set &.
1

Janossy density of order 2: the second order derivative (in the
generalized Lebsegue sense) of the generic BMF fx(-) is defined as

dxo dxy dxo

d(ﬁl

d*x(S) o d {dﬂx(s)} (2.53)
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thus, by recalling (2.23),

d’Bx(S) d © | 4
ey dan— doy Pl +n:2ﬁ day {/s, px({z1,...,z,}) daq "'dxn}
Cdpx({z1}) 1 d° /
- 3 drydey | Jge px({w1, 2}) doq dag
=0 :QPX({Jll,xz})
+§:li / { }) dap - d
17:377! day dzq San ) T z 2,

Finally, setting S = @ implies for any n > 2 that

d
. . = 2.
T L ) doneeda| <0 (255)
so that )
_d7Bx(S)
px({x1,22}) = daz das |, (2.56)

The second order Janossy density px({z1,x2}) is, once again, given by
the following couple of operations

1. differentation of the BMF fx(-) in x5 and x; or, more coincisely,
in the finite set x = {1, 22 };

2
dBx() _ d7Bx() to the empty set @

2. restriction of the derivative =
dx dzs dxq

In general, the generic Janossy density px({z1,...,2,}) is given by the
2-step procedure
1. differentation of the BMF fx(-) in @, £y_1, ..., &1 or, in short, in the

finite set x = {z1,... ,Tpn}. Such derivative is defined recursively via
the rule

d"6x(S) A d d71 By (9)

dx, de,y—q ... dx; o E dz,_1dry_o...dzy

(2.57)

dBx() _ d"Bx ()
dx

2. restriction of the derivative =3
Ty day_1...dzy

to the empty set &

Definition 4. Let @ : O(R™) — R be a set function. Then, if it exists, the
set derivative of ®(-) is the set function (é—'f : O(R™) — R defined as

d®(S) . [®(5) ifx =@
= n 2.
dx {dif(cizl if x = {xl,"-axn} vs;éx ( 58)
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d"®(S)

where Tz da1

is the n-th generalized Radon-Nykodim derivative of ®(-).

Thanks to the definition of set derivative, the inverse operation of set-
integration is expressed coincisely as set-differentation, which consists in the
computation of every generalized Radon-Nykodim derivatives restricted to
the empty set.

This means that integrating an MPDF px ({-}) produces the relative BMF
Bx(+), while evaluating on the empty set S = & the set-derivative of a BMF
Bx(+) provides the relative MPDF px({-})

dac)
px(x) 20 /S px(x) dx 2 Bx(S) —2=% pe(x)  (259)

2.7 Probability Hypothesis Density

2.7.1 Definition

The so-called probability hypothesis density (PHD) can be regarded as the
RFS counterpart of the concept of expected value. Its definition is not
straightforward, in fact consider the naively

EX] = /XPX(X) dx = Z%/{ml,...7xn}px({x17...,xn}) dzy - - - day,.
n=0 """

(2.60)
Clearly, the product {z1,...,z,}px({z1,...,2,}) is not defined because
{z1,...,2,} is a set rather than a vector, so that such approach cannot

be considered. On the other hand, a well-defined concept is the expected
value of a multiobject function f : F(R") — R:

BIF00) 2 [ 600 dx
- (2.61)
= Z ! /f({xlw-~?mn})px({$1,...,xn}) dxl"'d.%‘n

n=0 4

since now the products, the sums and the integrations are all performed
between two multiobject functions f({-}), px({-}). Due to this fact, the
standard approach adopted by FISST in order to define the expected value
of an RFS is to replace the RFS X with a "look-like” identity function f({-})
for the considerd RFS X. The (quite natural) choice of FISST for f({-}) is
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to consider the indicator function d((.y) (), which is defined as follows

x — Ox(x) £ {Zwiex ) %fx e N {Zﬂ“exa(aji ) ?fx 7o
0 if x=9 0 ifx=9g
(2.62)
where 6;(+) is the Dirac delta concentrated at the point z;. Note that dx(x)
is a function of the RFS X and not of the vector x: the latter has to be
regarded as a fixed external parameter. As a result, the expected value of
an RFS X, that is the PHD, is not a finite set but a standard function

Definition 5. Let X be an RFS characterized by the MPDF px({-}). The
probability hypothesis density (PHD) or intensity of the RFS X is the function
Dy : R™ — R defined as follows

Dx () £ Elox (x)) = / 5 () px(x) dx. (2.63)

Notice that in the computation of the set-integral that defines a PHD, the
argument x has to be regarded as a fixed parameter, while the integration
variable is rather the finite set x. Note that in order to know the PHD one
has to compute a different set integral for every possible value of x.

2.7.2 Practical interpretation

According to definition 5, the integral of a PHD Dx(-) over a region S €
O(R™) is

[3 Dy() do = [3 / 5.() px(x) dxdz
= / (/S 0x () dx> px(x) dx

N / (/S > oz —x) dgj) px(x) dx (2.64)

Z -/Sé(acl —x) dm) px(x) dx

ZTiEX

Now, by observing that

/5(%— —z)de = {1 fa; € 5 (2.65)
s

0 otherwise
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it turns out that

3 /Sé(sci _g)dz=[xN S| (2.66)

T; EX

so that the combination of (2.66) with (2.64) yields to
/ Dy (x) dz = / XN S| px(x) dx = E[X N S[] . (2.67)
s

Hence, in conclusion, the PHD Dx(-) is a function that, if integrated over
a region S, expresses how many elements of the considered RFS are expected
in S.

In analogy to the ordinary concept of PDF, the PHD Dx(-) is a function
(more precisely, a density) which tends to take large values in regions S that
most likely contain at least one element of X. Note however that Dx(+) is not
a PDF because in general does not integrate to the unity. In fact, by setting
S = R", it turns out that the integral of Dx(-) is the expected cardinality of
the considered RFS X, i.e.,

/Dx(a:) dz = E[|X| (2.68)
is a generic, not necessarely integer, non-negative number.

2.7.3 Relationship with the BMF

Given the BMF Bx(:) of an RFS X, the PHD Dx(-) can be found via the
following set-differentation

P =T

Note that, in principle,it is not well defined because the definition of
generalized Radon-Nykodim derivative requires that the point x where is
differentation is performed be outside the region S where the set function
under differentation is evaluated (and this cannot occur since S = R™). In
this situation, it is necessary to use a more general definition of derivative,
which, in particular, is

(2.69)

d S\C?2_YUCL_)—px(S\C2,
ﬂX(S) ry lim ﬂx(( \ s 2) s 1) 6X( \ s 2) (270)
dx €1,6210 6?
where C} . ,C2 , are hypercubes with edges €;, €3 > €; centered in x Such

definition works for every possible choice of x and S.
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Hence, equation (2.69) in combination with the newly defined Radon-
Nykodim derivative tells how to compute the PHD Dx(-) as a function of
the BMF Sx(-). Conversly, the BMF Sx(-) cannot be recovered from the PHD
Dx(+), meaning that there is not a 1-to-1 corrispondance between (Ox(-) and
Dx(-).

The PHD Dx(-) does not provide a full statistical characterization of
an RFS X, but a synthetic representation of X consting only of the most
important information. In this sense, the PHD Dx(-) can be regarded as a
first order statistical description of X, while the BMF Sx(-) (or the MPDF
px({-}) or the model (py,S)) is a full statistical description of X.

2.8 RFS models

2.8.1 IID RFS

Let pn(-) be a discrete density and let px(-) be a symmetric PDF over
R™. An RFS X is called independent and identically distributed (IID) with
cardinality py(-) and spatial density px (-) if and only if its MPDF takes the
form

px(x) = X|'pn (X)) [ px (@) (2.71)
xTeEX
by set-integrating the MPDF turns out that the BMF is
o n
x(S) =3 ( [ pxta) dx) () (2.72)
n=0

2.8.2 Poisson RFS

Let X be an IID RFS. The RFS X is called Poisson if and only if its cardinality
is Poisson for some parameter A > 0, i.e.

A\

pn () = Pox(n) 2 exp(—A)ﬁ- (2.73)
It turns out immediately that the multiobject PDF of a Poisson RFS is
px(x) = exp(=A)AX! HpX (2.74)

TEX

By introducing the so-called intensity function I(-) £ Apx(-), the ex-
pression of the multiobject PDF of a Poisson RFS simplifies to

px(x) = exp(— H I(x (2.75)

TEX
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Note that the integral of the intensity function provides an estimate of
the cardinality of the RFS X, indeed it holds that

/ I(z) dz = A =K, [N]. (2.76)

This fact explains the reason why I(-) is called intensity of the RFS X:
if I(-) has a large integral then the mean value of the number of vectors
contained in X is large (= X is ’intense’).

By set-integrating the MPDF follows that the BMF is

Bx(S) = exp (—/\ + / I(z) dx) (2.77)

s
on the other hand, by set-differentiating the BMF follows that the PHD is
D(z) = I(x) (2.78)

2.8.3 Bernoulli RFS

Let X be an IID RFS. The RFS X is called Bernoulli if and only if its
cardinality is Bernoulli for some parameter p € [0, 1] called probability of
existence, i.e.

pw (1) = Bery (1) £ (1= p)do(n) + pdi (). (2.79)

It turns out immediately that the multiobject PDF of a Bernoulli RFS
is
px(x) = [(1 = p) do(Ix]) + ppx (x) du (x])] (2.80)

Note that px(x) = 0 if |x| > 2. Set-integrating the BMF gives the follow-
ing BMF

Bx(S)=1-p+p /pr(x) dz (2.81)

moreover the PHD is
D(z) =ppx(z) (2.82)

2.8.4 Multi-Bernoulli RFS
Let be X1, Xo, ..., X, be a finite family of independent Bernoulli RF'Ss with

probabilities of existence pi, po, ..., pm respectively. An RFS X is called
multi-Bernoulli with components Xy, Xs, ..., X, if and only if
X=JX. (2.83)



2.8 RFS models 31

Due to independence, the BMF is

Bx(S) =] Bx.(5) =] (1 —pi +pi / px, (2) dx) : (2.84)
i=1 i=1 s
One can show via set-differentation that, for n = 0,1,...,m, the generic

Janossy density is

pl{nseon) = S TTo TI0 -0 (szxxaw) (2.85)

AEFT €A i¢A

where F" £ {A:AC{1,2,...,m},|A|l = n}, while px({z1,...,2,}) =0
for any n > m.
By set differentiating the BMF, turns out that the cardinality density of
a multi-Bernoulli RFS is Poisson-Binomial with parameters py, ..., pm, i.e.
pn(n) =PBy,p,. (1)
A {ZAGF;I" HieA bi HigA(l - pi) if ne {Oa 1,... ) m} (2'86)

0 otherwise

the PHD is .
D(z) = Zpi px,; () (2.87)
i=1
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Chapter 3

Generalized multiobject
calculus

3.1 Summary

In order to clarify the derivation of the PHD filter, the main objective of this
chapter is to provide a good understanding of the meaning of PGFL and a
good understanding of the main tool used to manipulate them, i.e. the the
functional derivative. The PGFLs are RFS descriptions equivalent to the
BMF's or the MPDFs, but they have the advantage to greatly simplify some
calculations in the derivation of the PHD filter. Without the PGFLs and the
functional derivatives, such derivation is much harder even if not impossible.

The main concepts of the chapter are the following:

e the definitions of functional and PGFL. In the first part of the chapter
such definitions are given and then the PGFLs of the most common
RF'Ss are presented;

e the definition of functional derivative. This is the tool used to ex-
tract the PHD density from a PGFL. For this reason, the concept of
functional derivative plays a central role in the derivation of the PHD
filter;

e properties of functional derivatives. Instead to apply the definitions,
the functional derivatives can be computed more easily according to
some rules presented in the final part of the chapter.

33
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3.2 Functionals

A functional F[] is a function of the type F : T — R, where T is the
following set of functions

T2{h:R"—R:0<h(z)<1 VzeR"}. (3.1)

In simple words, a functional is a transformation F'[-] that associates a
special function h(-), called test function, to a real number. For example,
the following tranformations are functionals

f[h = / h(z) f(z) dz 52)
X 4 1 fx=9o
"o {Hwex hz) ifx#£o (3.3)

called respectively linear functional and power functional. If f(-) is a PDF
then the linear functional assumes the meaning of expected value of the test
function h(:). In particular, if X is a random vector with PDF f(-), then
the probability of the event X € S can be written as the following linear
functional

P(X € 5) = Px () 2 /S f(2) da = / Ls(@) f(@) do = flls]  (3.4)

where 1g is the indicator function of the open set S (1g(z) £ 1iffz € S, 0
otherwise). It is easy to see that the linear functional, as suggested by the
name, is linear, i.e. flahy +bhs] = a f[h1]+ b f[h2] for any choice of scalars
a,b and test functions hy, hs.

3.3 Probability Generating Functional

3.3.1 Definition and interpretations

The most important functional involved in FISST is the so-called probability
generating functional (PGFL), defined as follows:

Glh & / 1 px(x) dx (3.5)

where h(-) is a generic test function and px({-}) is an MPDF. Essentially, the
generic PGFL is a linear functional of the power functional (3.3), where the
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involved integral is a set integral and the considered density is the MPDF
px({-}), so that G[h] = px[h*]. In this sense, a PGFL can be seen as the
expected value of the power h*, where X is a RFS whose MPDF is px({-}),
ie.,

G[h] = E[RX]. (3.6)

Another interesting interpretation of the meaning of PGFL is provided
by the following relationship

G[lg] = /1§px(x) dx = /pr(x) dx = B(S) (3.7)

where it is observed that the power of the indicator function 1g(-) does not
vanish only when the dummy finite set x = {z1,...,2,} is included in the
region S. Equation (3.7) states that the PGFL is a generalized BMF, where
the indicator function 1g(-) is replaced by a generic test function A(-). For
this reason, the multiobject calculus involving the PFGLs is referred to as
” generalized”.

Note that the PGFL represents a full characterization of an RFS: given
a PGFL, equation (3.7) expresses how to recover the BMF. On the other
hand, given a BMF one can recover the MPDF (via set differentation) and
then compute the PGFL according to the definition.

3.3.2 Properties

e (Linearity): Let Gyx,+bx,[-] be the PGFL of the linear combination
a Px, ({}) +bpx, <{}) of the two MPDF's px, ({})7 bx, ({}> Let Gx, H7
Gx,['] be the PGFLs of the MPDFs px, ({-}), px,({-}). Then

GaXy+bXs [h] =aGx, [h] + bGx, [h] (3.8)
Note that this is a trivial consequence of the set integral linearity.
¢ (Independent factorization): Let X = U¥_,X; be the union of k

independent RFSs X1, ..., Xj. Let Gx[] be the PGFL of X and let
Gx, -] be the PGFL of X;. Then

k
Gxlh] = ][] Gx.[nl- (3.9)
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3.4 Examples of PGFLs

3.4.1 Poisson PGFL

Let X be a Poisson RFS with intensity I(-) = Apx(:). According to the
definition, the PGFL of such RFS is

Glh] = exp(I[h — 1)) (3.10)

where it is used the linear functional notation I[h] £ [h(z)I(z) dz and it
is observed that

I[h] = A =I[h —1] (3.11)

3.4.2 1IID PGFL

Let X be an IID RFS with cardinality py(-) and spatial density px(-). The
PGFL of such RFS is

G[h] = [GN(Z)]z:pX[h] . (312)
Once again, px[h| is the linear functional notation for [ h(z)px(z) dz.

Moreover it is introduced to so-called probability generating function (PGF)
Gn(+) of the cardinality density py(-), which is defined as

Gn(z) = Zz”pN(n) (3.13)
n=0

and, essentially, it is the z-transform of px(-). In this sense, the concept
of PGFL can be seen a RFS counterpart of the standard concept of PGF.
Moreover, a PGFL can be also tought as a sort of z-tranform of a MPDF

px({-})-

3.4.3 Bernoulli PGFL

Let X be a Bernoulli RFS with probability of existence p and spatial density
px (). The PGFL of such RFS is given by

Glh) =1—-p+ppx[h] (3.14)
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3.4.4 Multi-Bernoulli PGFL

Let X be a multi-Bernoulli RFS with Bernoulli components {(p;, px, (+))}7,.
According to the independent factorization, the PGFL of such RFS is
Gl =] (1 = pi + pipx.[h]) (3.15)
i=1

3.5 Functional derivatives

3.5.1 Heuristic definition

Likewise the set derivative can be used to extract the MPDF from a BMF,
the functional derivative can be used to extract the MPDF from a PGFL.
Moreover, the functional derivative can be used to extract the PHD from a
PGFL.

Recall the definition of directional derivative (usually called Frechet deriva-
tive) for functions F': R” — R

OF ) 2 yypy Fl@tew) = Flo)

ow e—0 €

(3.16)

which quanties the how much the function F(-) changes when onsidering a
small perturbation of its argument x in the direction w € R™.
The so-called Gateaux derivative is a direct generalization of the Frechet
derivative for functionals F': T'+— R
OF Flh — Flh

— 1
dg e—0 € (3 7)

which represents how much the functional F[-] changes when it is considering
a small variation of its argument A in the direction g € T. Finally, the
functional derivative (aka Volterra derivative) is a special case of Gateaux
derivative, which considers the special direction provided by the Dirac delta
function concentrated at the point x

OF s OF s Flhted,] = F[H]

wich represents how the functional F[-] changes when h(-) is perturbated at
the point . More in general, the functional derivative of a functional F/[]
with respect to a finite set x = {z1,...,x,} is defined as iterated Gateaux
derivative in the directions d,,,..., 0z,

8F[h] N {F[h} if x = @

(3.18)

— . : 3.19
0% w g M ifx={ay,. 2y} (3.19)
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e Example 1: consider the generic linear functional F[h] £ f[h] =
J h(w) f(w) dw. The first order functional derivative is

offh] _ 0 [of[p]] _ 0 o flh 4 €da,] — fIH]
o{z1t 96, [ 0z ] " 0., [FIR]] = limy ¢
— lim J1h(w) + bz, (w)] f(w) dw — [ h(w) f(w) dw
e—0 €
. ([ h(w) f(w) dw + € [ 65, (w) f(w) dw) — [ h(w) f(w) dw’
e—0 €
= lg% 8z, (W) f(w) dw = /511(10) fw) dw = f(x1)

(3.20)
Since the result does not depend on the generic test functions h(-), the
higher order functional derivative are all identically zero. In conclusion,
the functional derivative of a linear functional is

fln] Ux=o
W _ L far) itx={an) (3.21)
0 otherwise

In simple words, the functional derivative has the effect of extracting
the density function f(-) from the functional f[-].

3.5.2 Rigourous definition

The definition (3.18) is only a practical engineering heuristic. The rigorous
definition of functional derivative is based on the definition of set derivative.
First, consider the set function

5 OF

o(5) 2 5

[h] (3.22)

9=1s

Such set function admits a density ¢(-), so it is possible to express ®(-) as
follows:

B(S) = /S o(x) da. (3.23)

The density ¢(-), which is given by Lebesgue-differentation of ®(-), is the
rigorous definition of functional derivative of F[], i.e.

d

OF . 4 d B
= o 20N =

=
|
<
—~
8
~
Il

OF
8—g[h] g_ls] . (3.24)
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In a more fancy way, it is possible to define the functional derivative in terms
of set-differentatation of ®(-)

OF .., d
" amy

This equation is the so-called constructive definition of functional derivative,
since it provides an explicit method to compute the functional derivative of
F[-]. On the other hand, Equation (47) can be expressed with the more
meaningful notation as follows

OF OF
= /S 5 {x}[h] dz (3.26)

this is the so-called non-constructive definition of functional derivative (it is
only an implicit definition since the functional derivative is under the sign of
integral). The non-constructive definition can be naturally extended to the
generic Gateaux derivative as follows

OF
Fl g_lj » (3.25)

(1]

OF oOF
Gl = / o(a) 5oy ] do (3.27)

The idea about behind this formula is based on the fact that

oF
dg

m| = / Lo(o) 2E 1] da (3.28)

9 {x}

so that replacing 15(-) with the generic test function g(-) provides the general
Gateaux derivative of the functional F[-]. Equation (3.28) express the fact
that it is possible to recover any Gateaux derivative by knowing the simpler
singleton functional derivative.

9=1s

3.6 Properties of the functional derivatives

3.6.1 Set derivatives as special functional derivatives

OF[h] _ dor(S)
Ox oy - dx

(3.29)

PROOF (SKETCH)

Let E, be a neighborhood of  with hypervolume €. If ¢ — 0 then

5, (w) = 12=(®) (3.30)

€
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consequently ed, = 1g, and

OFI)|  _ . Fliten]-F| . Flbtls] - F[A
o{a} =y, 0 € he1g 0 € =1
— im F[lSJrlEz] F[ls]
e—0 €
(3.31)

Let ¢r(S) = F[lg] the set function induced by the functional F[-] and
assume for simplicity that S and E, are disjoint, so that 1s +1g, = lsug,
and

OF(A|  _ . Fllsun] = Flls] _ | 6r(SUE) = 6r(S) _ dor(S)
O{a} |y, 0 € =0 € - d{z}
(3.32)
By iterating the procedure over the entire generic finite set x = {x1,...,z,},
equation (3.29) is obtained. O

In particular, the functional derivative of the PGFL restricted to the indica-
tor function h = 1g is the set derivative of the BMF i.e.,

0Glh dg(s
oGIn | _ dB(S) (3.33)

Ox |poig dx

From the above fact, some interesting results arise:
e setting S = @ provides the MPDF, indeed
9G[h] ds(s)
= = px(x). (3.34)
Ox |1, dx  |g_g

Since 15 = 0, the operation that extracts the MPDF from the PGFL
is the functional derivative restricted to the null test function h = 0
OG|h]
ax

= px(x) (3.35)

e setting S = R™ and by considering the singleton x = {2}, provides the
PHD density, in fact

0GIh] _ dB(s)

oz} oy, dfz}

Since 1gr» = 1, the operation that extracts the PHD density from the

PGFL is the functional derivative restricted to unitary test function
h=1

= Dx(x). (3.36)
S=Rm™

dG[h]

= Dx () (3.37)
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3.6.2 Fundamental theorem of multiobject calculus

)= o[ [ an] @

= [ 20

(3.38)

dw (b)
h=0

PROOF (SKETCH)

e (a): equation (63a) is already proved. In fact, by observing that the
set integral in the RHS is the PGFL G[-] of the MPDF px({-}), follows
trivially that equation (1.38a) is equation (1.34).

¢ (b): suppose for simplicity that the considered functional F[-] is the
PGFL G| of the MPDF px({-}). In this case, equation (1.38a) tells

that
0 F[h]

ow
Hence the RHS of (1.38b) is, as claimed, the PGLF of px({-}) itself

= px(w). (3.39)

/hw px(w) dw = F[h]. (3.40)

The result still holds in the general case where F[-] is as a generic
functional.

O

The fundamental theorem proves that the PGFL of RFS is a descriptor
equivalent to the BMF or MPDF, in fact:

e given a MPDF, the definition of PGFL provides the rule to compute
the relative PGFL;

e given the PGFL, (1.38a) provides the rule to get back the MPDF.

3.6.3 Turn the crank rules for functional derivatives

e (constant rule) - Let F[h] £ K be a constant functional, i.e. a
functional that does not depends on any test function A(-). Then

0K

7] 0 (3.41)
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(linear rule) - Let F[h] £ f[h] £ [ h(z) f(x) dz be a linear functional
with density f(-). Then

o1 _ .,
5 =@

(3.42)

e (monomial rule) - Let F[] be a generic functional and let N be an
integer. Then
O(Fh)™
9 {x}

OF[h)
o{x}

(sum rule) - Let F[-], F5[] be two generic functionals and let a, b be
two real numbers. Then

= N (F[R)~

(3.43)

0 " . OF:[h] OF5[h]
a{x}( Fi[h] + b Fy[h]) ot b (a) (3.44)
e (product rule) - Let Fi[-], F3[-] be two generic functionals. Then
0 _ OF[h] OF5[h)
5oy iR Felh]) = e Pl + (k] s (3.45)

e (first chain rule) - Let F[-] be a generic functional and let ¢(-) be a
generic scalar function. Then
dp(F[h]) _ de(y) OF[h]

oY~ Ay ey 00} (3.46)

3.7 Second chain rule

3.7.1 Functional transformations

Let [h](-) be a functional transformation, i.e. a function that transforms a
test function h(-) into another test function ¢[h](-).

e Example 2: The functional transformations are defined pointwise on
the domain of the starting test function h(-). An example of functional
transformation is

plh](w) =1 = p(w) + p(w) h(w) (3.47)

where, necessarily, p(-) is a second test function (if this is not the
case then @[h](-) will not be a test function). Note that by fixing in
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wp the argument w and by varing the test function h(-), the func-
tional transformation ¢[-](wg) behaves exactly like an ordinary func-
tional: ¢[-](wo) associates the actual test function h(-) to a scalar
wlh](wp) = 1 — p(wg) + p(wp) h(wp). From this prospective, it make
sense to compute the functional derivative of the functional ¢[-](wp)

0 lh)(wn) o | elh + b, ](wo) = efkl(un)
0{z} €0 €

(3.48)

whatever it is the fixed point wy.

In general a functional transformation can be seen as a continuos family
of functionals parametrized by the argument w of the base test function
h(-). Due to this interpretation, the definition of functional derivative for a
functional transformation ¢[-](-) is

Oplh(w) o . elh+ b)) —plh)w) L

—_— 4
0{z} e—0 € (3:49)
3.7.2 Theorem
Consider a functional F[-]. Since @[h](-) is a test function for any fixed

base test function h(:), it is well defined the composition F[p[h]], wich is a
functional as well. Thus, it make sense to compute the functional derivative
of the composition F[p[h]].

Theorem 1. (second chain rule) - Let be F'[-] be a generic functional and
let ©[h](-) be a generic functional transformation. Then

DFlplh)] [ 0plh)(w) dFIi .
ooy ) ol o i (3:50)
ProOOF

According to the practical definition of functional derivative, holds

OF[plh]] _ . Fllh -+ 8,]] - Flolh]

3.51
0{z} e—0 € (3:51)
now, by considering the linear approximation
0plh
olh+e6,] ~ o[p] + 2E1M (3.52)

0{z}
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which can be written as

OFpl) _ . Flelh + 58 o - Flelh]
0 {J?} e—0 €
Flh+ d o[h] |~ FIA) (3.53)
. 9 {z} €
= lim
e—0 € ﬁzw[h]

the third member is the Gateaux derivative of F[-] evaluated on the test

function h = @[h] and in the direction g = g"fz[ph}], S0

O Flplh] _ 0 Fli 550
O{z} 99 |g=geln fimpin)
thus, the conclusion is
9 Flp[h]] 9 p[h](w) O F[h]
= dw 3.55
o (s} o(z} 0{w} iy (3.55)
as claimed O
3.7.3 Observation
Note that the two notation
0 Flp[h]] O F[h]
P} 3.56
51z} 90t | (3.56)

figuring in the previous proof are confusingly similar, but, as one naturally
expects, in general doesn’t represent the same quantity. In fact, the former
is given by
OFplh] _ . Flelh+ eds]] — Flo[h]]
= lim
0{z} e—0 €
while the latter is given by the definition functional derivative restricted to

h = ¢[h], i.e.
O F[h]

(3.57)

o Flelh) + e8] — Fllh))

e—0 €

h=¢p[h]
(3.58)
Now, by comparing the difference quotients, turns out clearly that

IF[p[nl] — lim Flplh + €d,]] — Flo[h]] y

6{1'} e—0 €
i Lo+ €6a] = Flo[h)] _ O F[h] (3.50)
e—0 € 8{.%‘} ;L=<,a[h]
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rather, the correct equivalence is expressed by

OF[pl]] _ . Flelh+edo]] = Flp[h]]

0{z} e—0 €
) 3.60
F [plhl+ 5] - Fletn) ap[h]‘ (3.60)
1m =
e—0 € dg 9=%8 h=ph]

so, in conclusion, in (1.50) the former functional derivative is performed in

the direction %ﬂ,’i}, while the latter derivative is performed in the direction
Oy, 1€
OF[pln]  OFIh] L 9 F[h)  OF[h]
0 {z} 09 lg=getl fmppn) 042} gy 99 g imein)
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Chapter 4

Standard PHD filter

4.1 Summary

This chapter provides a detailed proof of the PHD filter equations, which ex-
press how to compute the predicted and corrected PHDs Dy, (-), Dy (-).

In this chapter such filter is referred as standard in order to make a
distinction with the second version designed to handle extended object. The
difference between this two PHD filters is in the measurement model, where
the standard PHD filter assumes that an object can generate no more than
one measure per sampling step, while the PHD filter for extended object
assumes that an object can generate an arbitrary number of measures per
sampling step.

The chapter is organized as follows:

e firstly the equation of the multiobject Bayes filter, presented in the
introduction of the thesis, are re-written in the language of PGFLs;

e then is defined the motion and measurement model of the standard
PHD filter, in short called standard model, and the consequent multi-
object Bayes filter, called standard multiobject Bayes filter, is derived
in its PGFL form,;

e in the final part the PHD filter equations are computed starting from
the equations of the standard multiobject Bayes filter. In conclusion,
the equations of the standard PHD filter are simplified by consider-
ing linear-Gaussian models, yielding to the so-called Gaussian mixture
PHD filter (GM-PHD filter), which is an algorithm that can be easily
implemented to the calculator.

47
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4.2 (General multi-object Bayes filter

4.2.1 Preliminary discussion

In the classical Kalman filtering theory, many real aspects involved in the
detection process are not taken into account. For example, consider the
situation where a ground-to-air radar is used to surveil a certain region of
space called scene.

The output of the radar is a so-called signature, which is a continous
signal s : [0, 27] — R that maps an azimuthal angle « into a radio-frequency
intensity s(a). If an object is located at angle « then the signature gets a
value s(«) significantly stronger than the noise floor of the radar. Due to
this fact, the azimuthal position of an object present in the scene is extracted
from the signature by comparing the signature with a suitable treshold 7:
the object is declared present in « if s(a) > 7, and in such case one says
that the object is detected at azimuth «. The actual detection process is
characterized by the following facts:

e due to measurement noise, if the treshold 7 is set too low then it is
very likely to get detections even when there is no object in the scene.
Such detections are called false detections. The set of false detections
is called clutter;

e if the treshold 7 is set too high then it is very unlikely to detect objects
present in the scene. In this case one says that the objects present in
the scene that don’t produce any detection are miss detected;

e if an object is too close to the radar then it is possible that it can
generate more than one detection. In such case the object is called
extended object;

e if a group of objects is too far from the radar then it is possible that
the entire group generate only one global detection. In such case, the
objects in the group are called unresolved;

e if an object is not too near and not too far from the radar then it is
very likely that it generates only one detection. In such case the object
is called point object;

e an object actually non present in the scene can enter the scene in the
future. This event is called object birth;

e an object actually present in the scene can leave the scene in the future.
This event is called object death.
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These are the major aspects that are not considered in the classical single-
object oriented Kalman filtering theory. It is worth to point out that the
actual example is only one istance of many real applications where the clas-
sic Kalman filtering theory is not sufficient to address the state estimation
problem.

On the other hand, the multiobject Bayes filter can handle all these
issues by considering measurement and motion models based on the RFS
representation. In particular, the standard multiobject Bayes filter considers:

e a standard measurement model which takes into account the clutter
and miss-detections for point objects;

e a standard motion model which takes into account object birth and
death.

Extended and unresolved objects are treated by the non standard multiobject
Bayes filter.

4.2.2 General equations

The multiobject Bayes filter is the direct generalization of the single ob-
ject Bayes filter, where the basic concepts of PDF, integration, likelihood,
transition density are replaced by the FISST concepts of multiobject filtered
and predicted densities, set integral, multiobject likelihood and transition
density.

The two main steps of the multiobject Bayes filter are the following:

e Correction step: the Bayes equation for the multiobject Bayes filter
gets the form

_ G ek ()
J ke (ylw) prjr—1(w) dw

where p({-}) is the filtered MPDF, £ ({-}|x) is the multiobject like-
lihood and py,—1({-}) is the predicted MPDF. Note that the evidence
is computed as a set integral. The Bayes equation (104) defines the
correction step performed by the multiobject Bayes filter.

Prjr(X) (4.1)

e Prediction step: the Chapman-Kolmogorov equation for the multi-
object Bayes filter gets the form

Pk+1\k(x) = /¢k+1\k(X|W)Pk|k(W) dw (4.2)
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where @, 115 ({-}|w) is the multiobject transition density. Once again,
a set integration is involved in place of an ordinary integration. The
Chapman-Kolmogorov equation (105) defines the prediction step of the
multiobject Bayes filter.

4.2.3 PGFL form

The multiobject Bayes filter is expressed in terms of the predicted MPDF
Prjk—1({-}) as a function of the corrected MPDF pj,_q,_1({-}) through the
multiobject Chapman-Kolmogorov equation

Prjk—1(x) = /S0k|k—1(X|W)pk—1|k—1(W) dw (4.3)

and in terms of the corrected MPDF py;.({-}) as function of the predicted
MPDF py—1({-}) through the multiobject Bayes equation

_ G prgpa ()
J e (yw) pgjr—1(w) dw

Since a PGFL, likewise an MPDF, provides a full characterization of an
RFS, the multiobject Bayes filter can be expressed in terms of PGFLs as
well. Consider the predicted and corrected PGFLs

Gk‘k,l[h}é/hxpk‘k,l(x)dx Gk‘k[h]é/hxpkw(x)dx. (4.5)

These PGFLs are respectively given by a transformed Chapman-Kolmogorov
and a transformed Bayes equations, which are derived as follows.

(4.4)

pk|k(x)

e Chapman-Kolmogorov equation: starting with the simpler pre-
dicted PGFL, it holds that

Grjr—1[h] Z/hX (/ Pr 1|k (XIW) P 1jp—1 (W) dW) dx

= / (/ R ppie—1 (x|w) dX) Pr—1]k—1(W) dW.

By defining ®y,_1[|w] as the PGFL of the Markov transition MPDF
‘Pk|k—1("w)

(4.6)

Ppyp—1[hlw] £ /hx Prjk—1(x|w) dx (4.7)

from which it follows that the PGFL form of the Chapman-Kolmogorov
equation is

Grlk—1[h] = /(I)k|k—1[h|w]pk—1|k—1(w) dw. (4.8)
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e Bayes equation: now consider the corrected PGFL, it holds that
x L1 (y[x) Prejr—1(x)
Gunlt) = [ (T iy )
Pl (yIX) prye—1(x) dx
[ le(yw) prjp—1 (w) dw
J P L (y|x) prejre—1(x) dx
[ A £ (y|w) prig—1(w) dw], |
By defining Ly[-|w] as the PGFL of the likelihood MPDF £, _1(-|w)

(4.9)

Lulglw) £ [ " u(yiw) oy (4.10)
it follows that 9 Lulglw]
k|gIW
——=  =l(ylw) (4.11)
dy =0
from which it follows that the corrected PGFL can be written as
f B 6Lk[9|><] | Opk|k71(x) dx

Grpelh] =
Kk I Mb:opk‘k,l(w) dw )

% U R Li[g[x] prjr—1(x) dx]g:0
acy [ 1 Li[glw] prje—a (w) dw],

where the symbol 0/0,y means that the differentation is performed
(only) with respect to the test function g(-) (while h(-) is mantained
fixed). In other words, d/0,y is a partial functional derivative evalu-
ated in y. By introducing the bivariate PGFL of the bivariate multi-
object density (x(-|") prjx—1(-)

Fulh,g] 2 /hW Ligw] pipes (w) dw

= /hw (/gyﬁk(yIW) dy) Prjk—1(w) dw (4.13)
= [ 9" ulylw) pigis ()

from which it turns out finally that the PGFL form of the Bayes equa-
tion (121) is
0 Fi[h,g]

D 0
Griklh] = 35, hggy| — (4.14)
h=1

,9=0
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4.3 Standard multi-object Bayes filter

4.3.1 Standard measurement model

The standard measurement model makes the following assumptions:

1.

an object detection is produced according to the observation model
Y = h(X,V), where V is the measurement noise. Note that this
assumption holds in two different situations:

e the detection process is based on a single sensor, characterized by
the model h(-,-), that can produce simultaneously several mea-
surements;

e the detection process is based on several sensors, characterized by
a common model A(-, ), that can produce up to one measurement;

. the clutter set is Poisson with intensity I : R? — R>(, where R? is the

measurement space;

an object is detected with probability pp : R™ — [0, 1], where R™ is
the state space;

an object can generate up to one measurement, i.e. all objects are
considered pointwise. In other words, an object can be miss-detected
or can generate one measurement;

. a measurement concerns at most one object, i.e. all objects are re-

solved. In other words, a measurement can be a false detection or can
be a detection of an object;

clutter and the set of object measurements are statistically indepen-
dent.

Given the above assumptions, the standard measurement model states
that the set of measurements Y = {V7,... , Y|}, referred to as multiobject
measurement (in short multimeasurement), consists of by two parts:

e the first part is the clutter C, which is simply the collection of the

false detections produced by the detection process. In other words,
the clutter C is the subset of the multimeasurement Y formed by the
measurements wich are not produced by objects

C={Y, €YY, is a false detection} (4.15)
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e the second part is the set of detections h(X), referred as multidetection,
which is simply the collection of the true detections produced by the
detection process. In other words, the multidetection h(X) is the sub-
set of the multimeasurement Y formed by the measurements wich are
produced by objects

h(X) ={Y; € Y :Y; is a detection} (4.16)

At this high level of the discussion the standard measurement model is ex-
pressed by the following simple set equation

Y =h(X)UC (4.17)

which, intrestingly, resembles the ordinary measurement model Y = h(X) +
V' considered in the ordinary single object Bayes filter.

The clutter C is an RFS that does not require any further explana-
tion, since assumption 2 states explicitly that it is Poisson. On the other
hand the multidetection h(X) is an RFS that needs further explanation. Let
X £ {X1,..., X|x} be the mulitobject state (in short multistate). Due to
assumptions 4 and 5, the generic object with state X; € X generates one
measure, which is Y; = h(X;,V;) according to assumption 1, if such object
is detected, while doesn’t generate any measurement if such object is not
detected. As a consequence of this fact, the generic object with state X; € X
is associated with an RFS h(Xj;), referred to as detection, such that

{h(X;,V;)} if object with state X; is detected

DR . - (418)
1%} if object with state X; is not detected

h(X;) £ {

Since the detection h(X;) is an RFS with cardinality concetrated over {0,1},
it is Bernoulli. The actual definition considers a generic object, so it holds
for every object in the scene and leads to the following natural definition for
the multidetection h(X)

h(X) £ | h(X3). (4.19)

X;eX

Thus in conclusion, due to assumption 6, the multidetection h(X;) is multi-
Bernoulli and consequently the multimeasurement Y is Poisson-multi-Bernoulli.

4.3.2 Standard motion model

The standard motion model makes the following assumptions:
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. an object with actual state X can evolve to the future state X' ac-

cording to the motion model X’ = f(X, W), where W is the process
noise;

. the birth set is Poisson with intensity /g : R" — R>, where R" is the

measurement space;

. an object doesn’t disappear from the scene, i.e. survives, with proba-

bility pg : R™ + [0, 1], where R™ is the state space;

. object spawning is not allowed. i.e. an object can disappear or can

survives and if survives then it generates only one new state;

. a new state is generated up to one survived object, i.e. multiple actual

states cannot fuse in one new state. This means that a future state is
generated by the movement of one survived object or it is generated
by the appearance of a new object;

. the birth set and the set of survived object are statistically indepen-

dent.

Given these assumptions, the standard measurement model states that the

future multistate X’ £ { Teee, X{X/\} consists of two parts:

e the first part is the set of new born objects B, wich is simply the

collection of the objects that are just appeared in the scene. In other
words, the birth set B is the subset of the future multistate X’ formed
by the states wich are not generated by the motion of the survived
objects

B = {X] e X': X/ is a new born state} (4.20)

the second part is the set of survived objects f(X), which is simply the
collection of the states generated by the motion of the survived objects

f(X) = {X] € X" : X/ is not a new born state} . (4.21)

The standard motion model is expressed by the following simple set equation

X' = f(X)UB (4.22)

wich resembles the ordinary motion model X’ = f(X) + W considered in
the single object Bayes filter.

The birth set B is already complete defined by assumption 2 (it is Poisson

with given intensity function). The set of survived objects f(X) is defined
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similarly to h(X): given X = {Xl, . }, the generic object with state 1,
according to assumptions 4 and 5, can move in a new state X! = f(X;, W;)
or can disappear, so such generic object is associated to the RFS

(4.23)

f(x)) 2 {f(X;,W;)}  if object with state X; survives .
%] if object with state X; disappears

In total there are |X| different instances of the previous RFS (one per object),
which can be collected in the global RFS

fX) £ | f(X) (4.24)
X;eX

The birth set B is assumed Poisson, while the RFS f(X;) is Bernoulli, so that
f(X) turns out to be multi-Bernoulli and X’ Poisson-multi-Bernoulli. The
conclusion is that the standard motion model is analogous to the standard
measurement model where the following substitutions are considered

CoB  h(X)=>fX)  YoX (4.25)

This means that all the previous results found for the standard measurement
model still hold for the standard motion model (with the new conventions).

4.3.3 PGFL form
The standard motion and measurement models are respectively

Xk+1 = f(Xk) UBg

Yi = h(Xg) U Cg (4.26)

where at any given time step k

e the RFS of survived objects f(Xy) is multi-Bernoulli with parameters
{ps(X), @k+1|k('|X)}XeXk§

e the RFS of new born objects By is Poisson with intensity Ig(-);

e the RFS of detected objects h(X) is multi-Bernoulli with parameters
{pp(X), €, (-|X) txexis

e the clutter Cy is Poisson with intensity I¢(-).

Moreover, the standard model assumes that all involved RFS involved are
statistically independent from each other. Due to this assumption, it is
easy to derive the PGFLs of the Markov transition MPDF and the likeli-
hood MPDF. Consequently, it is also easy to derive the PGFL form of the
Chapman-Kolmogorov and Bayes equations.
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e Markov PGFL: Let GY[-|Xz], G2[-] be the PGFLs of f(Xy), By re-

spectively. It holds that

GRXe] = T (1= ps(X) + ps(X) rrlhl X])

XeXy (427)
=(1-ps+ps <Pk+1\k[h])xk

GB[h] = exp(Ig[h — 1)) (4.28)

where @5, 1% [h|X] £ [ h() @ri1)%(z|X) dz. Due to the independence,
the PGFL G415 [-|X&] of the Markov transition MPDF 115 ({-}|Xx)
is given by

@16 [A|Xi] = GR[h[Xi] GRIR]

= (1 —ps +ps @k+1|k[h])xk eXp(IB[h _ 1]) (429)

likelihood PGFL: Let GP[-|Xx], GS[] be the PGFLs of h(Xy), Cg
respectively. With the same previous reasoning, it holds that

Li[hlXe] = GR[h|Xk] G5 [1] ) (4.30)
= (1 = pp +pp Lk[h])™ exp(Icl[h —1])
where £, [h|X] £ J h(x) X) dz.

Chapman-Kolmogorov equation: the PGFL form of the Chapman-
Kolmogorov equation for the standard multiobject Bayes filter is given
by

Grjp—1[h] = /(1 —ps + ps prk—1[h])" exp(I[h — 1]) pr_1jp—1(w) dw

= exp(Ig[h — 1]) /(1 — ps + s Crk—1[h])" Pr—1jk—1 (W) dw
=exp(Ip[h — 1]) Gx_1jk—1[1 — ps + ps Prk—1[h]]

(4.31)
where, naturally, the corrected PGFL is defined as

Gicimal 2 [ 1 e s () dw. (4.32)

Note that the corrected PGFL Gj_yj,—1[-] operates over the functional
transformation h + 1 — ps + ps @gx—1[h]-
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e Bayes equation: It turns out that
Filh, ] = / B [(1— pp + po Lelg))” exp(Telg — 11)] prje_i (w) dw
= exp(Iclg — 1) / B(1— po + pp Celg])" pagi1 (w) dw

— exp(Iclg — 1) / 1 (1~ o + pp Eelg])]” Drjer () dw

= exp(lclg — 1]) Grjr—1[h (1 — pp + pp Lk[9])]
(4.33)
Hence, the PGFL form of the Bayes equation for the standard multi-
object Bayes filter is

[eXp(Ic[ —1]) Ggjg—1[h (1 — pp + pp Ek[g]mg:o
—1]) Gjp—1[h (1 = pp + pp ék[g})]]hzl,gzo

Grk[h] =

i
0y

4.4 General PHD filter
4.4.1 Idea behind the PHD filter

The central idea of the PHD filter is to propagate the corrected PHD Dy, (z)
of the estimand Xj rather than the full corrected MPDF py({-}).

Then, the estimate Xy, is extracted from Dy (-) by considering the E[|Xy|] =
Dy, i [1] largest peaks of Dy (-). Note that the PHD filter is optimal in the
sense that it extracts the MAP estimate from Dy, (-) (and not from py(-)).

Due to this advanced approximation techinique, the multiobject Bayes
filter, wich is combinatorially intractable, reduces to the PHD filter, wich is
polynomial in complexity (more precisely, if the actual number of objects and
measurements are n and m then the complexity is O(nm)). The PHD filter
represents a rough approximation of the multiobject Bayes filter, resulting
in a great amount of loss in information. Despite this fact, in some scenarios
the PHD filter performs better than the conventional multihypothesis filters.

4.4.2 PHD filter vs Kalman filter

To understand why and when the PHD filter works correctly, one can think
the PHD filter as the multiobject counterpart of the steady state Kalman
filter. Consider a single object tracking problem where the corrected PDF
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Pr|k(+) is unimodal, symmetric and with a time invariant covariance: in this
situation the first-order approximation

Piop (@) = N (2|1, P) = piejie (@] i) (4.35)

where N(:|py i, P) denotes a Gaussian PDF with expected value ju;, and
covariance P given by the steady state Kalman filter, is accurate. This means
that one can propagate the first order moment 5, alone (rather than the
full PDF pyx(-)) without loosing the most important information about the
estimand xy; the notation pyy (-|x ) reminds that juy, contains the relevant
information about zy. In jargon, one says that ), is a sufficient statistics.

4.4.3 Limitations of the PHD filter

The PHD filter, likewise the steady state Kalman filter, assumes that the
multiobject first order moment, the PHD Dy (+), is a sufficient statistics of
the estimand Xj, i.e. the following approximation holds

Prlk(X) = Dpje (X Do) (4.36)
Such approximation is reasonable under the following conditions:

1. sensors are unbiased and charactezied by small covariances, meaning
that £ (-|-) is concentrated around the true values of the object states.
Here small means that, somewhat, the covariances are small with re-
spect to the distances between the real values of the object states;

2. clutter is not intense, meaning that the number of false measurements
I.[1] is small with respect the number of objects present in the scene.

To see why, consider the following consider the simple case where 2 objects
are present in the scene. Suppose that the sensors are Gaussian and unbiased,
so that

li(ylz) = N (y| z,0?) (4.37)

for some track variance o2. Moreover, suppose that the sensors are character-
ized by an ideal probability of detection pp = 1 and that there are no false
measurements, so that the multimeasure yr = {y1,y2} is collected know-
ing that there are no clutter measurements inside. Suppose for simplicity
that the predicted MPDF py—1({-}) is not informative, hence the corrected
MPDF py({-}) is essentially the multiobject likelihood £x({-}|y) (which is
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multi-Bernoulli with two deterministic Gaussian components). Thus

0 ifx=0o
0 if x={x1}
prk(x) = S N(@1]y1, 02 )N (22] y2, 0°) . . (438)
) o, ifx={z1,22}
+ N(z1]y2, 0" )N (22| y1,07)
0 otherwise
In this case, the corrected PHD is
Dyie() = N(z|y1,0%) + N (x| ya, 0?) (4.39)
and the expected number of objects is
B(Xul) = [ Dige(a) do =2 (4.40)

so that the PHD filter produces the estimate X = {21, &2}, where ; and
&y are the locations of the two largest peaks of Dy;(-). It is possible to
distinguish three different cases:

e case 1 - |y; — y2| > 20: in this case both Dy () and px({-}) are
bimodal, so that both the PHD filter and the multiobject Bayes filter
recognize two objects. More precisely, the two filters produce the same
estimate X = {y1,¥2};

e case 2 - v/20 > |y; — yo| > 20" in this case Dyx(+) is unimodal while
px({-}) is bimodal, so the PHD filter recognizes only one object while
the multiobject Bayes filter recognizes two objects. More precisely,
the PHD filter produces the estimate X = {1/2(y1 + y2)}, while the
multiobject Bayes filter produces the estimate X = {y1,y2};

e case 3 - |y; — y2| < V20: in this case both Dy (-) and px({-}) are
unimodal, so both the PHD filter and the multiobject Bayes filter rec-
ognize only one object. More precisely, the PHD filter and the multi-
object Bayes filter produce the same estimate x; = {1/2(y1 + y2)}.

The conclusion is that, for this example, the PHD approximation is appro-
priate if and only if |y; — y2| > 20. Moreover, the full multiobject Bayes
filter outperforms the PHD filter if and only if v/20 > |y; — y2| > 20. In the
third case |y — y2| < V20 both filters cannot track the two objects present
in the scene.
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4.4.4 PHD predictor

Theorem 2. Consider the standard model and let Gy ,—1 (-|w) = ps(w) xjp—1(-|w)
be the ”pseudo transition density” at time k — 1. Then, given the corrected
PHD Dj_yj;—1(-), the predicted PHD is

Dyjr—1(z) = In(x) + Dp_1jp—1[Prjr—1(z)] (4.41)

where the following linear functional is defined

D11 [Prjp—1(2)] = /¢k|k—1($|w) Dy _qjp—1(w) dw (4.42)
ProoOF

The predicted PHD is given by

0 Grjp—1[h]
o{x}

Gfx} lexp(Ip[h — 1]) Gr—1jp—1[1 = ps + Grp—1[hll],_,
(4.43)

Then, due to the product rule, after some simple calculations it turns out
that

Dyj—1(z) =

h=1

Dyjp—1(x) = 8{6;} lexp(Is[h — 1])];—; Gr—1jx—1[1 — Ps + Prp—1[1]]+
exp(Ig[1 —1]) 8‘({395} [Gk—lm—l[l —ps+ ¢k|k—1[h]]]h:1
=3 fm} lexp(Ig[h — 1])],_, + a?x} [Gr—1je—1[1 = s + Grpp—1[M]],_,

(4.44)
The first term is simply the PHD Ig(+) of the birth set Bg: in fact exp(Ig[h—
1]) is the PGFL of By, so the functional derivative restricted to h = 1 of
exp(Ig[h — 1]) is the PHD of By, which is Ig(-), i.e.

afx} fexp(Inlh — 1])],_, = In(x). (4.45)

For the second term, the second chain rule can be applied: define the func-
tional transformation

plh](w) 21— ps(w) + Gryp—1[hlw] (4.46)
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so that
Gr—1jp—1[1 = ps + Prjp—1[h]] = Gr_1jp—1[¢[h]]. (4.47)
The functional derivative of the second term is
G yealelhll|  _ [oplhlw)|  9Geuald) e
o{x} h=1 oz} | {w} h=¢l[1]

Thanks to the linearity of the functional derivative, as well as to the constant
and linear rules, the first term under the integral is

9 p[h](w)
0{z}

= a{am} [1 = ps(w) + Grj—1[hlw]],_; = Prje—1(2|w)

(4.49)
On the other hand, the second term under the integral is
0 G-k 1]
— 573 = Dy_qjp-1(w) (4.50)
oH{w} iy |

where it is exploited the fact ¢[1](w) = 1 identically for all w € R™. Conse-
quently,

akal\kfl[@[h]]

Z/@mk—l(x\w) Di—qjp-1(w) dw

o) | (4.51)
£ Di—1jp—1[@rjp—1(2)]
In conclusion, the predicted PHD is
Dyjp—1(x) = Is(x) + Dy_1)k—1[Pr|p—1(z)] (4.52)
as claimed. O

The result can be interpreted as follows: the predicted PHD Dy, (-) gets
large values in those locations = such that it is likely that an object can
appear x (i.e. Ig(z) is large) or such that it is likely that a survived object
move towards (i.e. Dy_qj,—1[Pkjk—1()] is large). On the other hand, the
predicted PHD Dk|k,1(-) gets low values in those locations x where it is
unlikely that an object can appear and a survived object moves towards (i.e.
both Ig(x) and Dy_q)5—1[Pr|k—1 ()] are small).

4.4.5 PHD corrector

Theorem 3. Consider the standard model (132) and let £;(-|w) £ pp(w) €5 (-|w)
be the pseudo likelihood at time k. Moreover, assume that the predicted
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MPDF py;—1({-}) is Poisson for some given intensity Dy,—1(-). Then, the
corrected PHD is

Dy () = M) Dyjp—1 () (4.53)
where the PHD likelihood A(:) is defined as follows
A(z) 2 (1= pp(x)) + Alylz) (4.54)

with

- 0, (y|x)
Aio) 2 D T T D ) (455

Proor

Thanks to the assumption that the predicted MPDF is Poisson, the sempli-
fication Gy|—1[h] = exp(Dy|r—1[h —1]) holds, thus the bivariate PGFL used
in the Bayes equation takes the following simple form

Fylh, g = exp(Iclg = 1)) Grp—r[Plizp (1—po 441 [a])
= exp(Iolg — 1]) [exp(Dipk—1[h = Wlich 1 po 4 a])

_ (4.56)
= exp(Iclg — 1] + Dyjp—1[h (1 — pp + €i[g]) — 1])
2i[h,g]

where the functional ¢[-, -] is introduced for the sake of notation. Given this

explicit expression for the bivariate PGFL, the corrected PHD is

8 Fi[h,g]
D (I)_éGk\k[h] 0 akg;g ’g 0 (457)
MR T ey |, 9{a) o fha] '

‘hlgO h=1

Notice that the denominator of the RHS does not depend on h(-) (since it
is already fixed to h = 1 before taking the derivative in {z}), thus it is a
constant functional. Consequently, thanks to the linearity of the functional
derivative, the external derivative with respect to the singleton {z} acts only
on the numerator of the RHS, i.e.

d{a} [8%[h’g]| } 0 Fy[h

_ o= 9y qohl_a(yu{z}hl,go

Dyje(x) = Iy = Ay (4.58)
h=1,9=0 h=1,9=0

with the convention that the differentation 0/ 8(y U {z}) is performed with
respect to h(-) when evaluated in {z} and performed with respect g(-) when
evaluated in y. At this point the problem is to compute the numerator and
the denominator of the RHS and then take their quotient.
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step 1: Computation of the denominator

The objective is to compute

9 9
R @[QXP(LQ[}LDM:LFO = o— [exp(e[g])]y—p  (4.59)

Oqy

where [g] £ i[1,g]. Now it is convenient to compute the derivative with
respect y by increasing step by step the number of considered measurements.
Taking in mind that the differentation in y is always performed with respect
g(+), the subscript ¢ will be omitted from the notation 9/9,.

e case 1: y = @ - trivially

0o

= Fi[1, 9] = exp(e[g]) (4.60)
h=1

e case 2: y = {y1} - due to the first chain rule (82), holds

d Fy[h, g] _ Oexp(efg]) _ [dexp(clg]) O¢[g]
O} lirgeo 0w} ‘{ g ofmtl,, Y
The first factor is trivially
dexp(e[g]) _
St = explula) (4.62)

while the second factor, according to the linearity of the functional
derivative and to the linearity of the linear functional Dy j_[-], is

68{5]} = Io(y) + Dy lle(yn)] - (4.63)
Hence,
(w L = exp(u[g]) (Ic(yl) + Dk|k71[gk(yl)]> (4.64)

e case 3: y = {y1, 92} - According to the definition of iterated functional
derivative and observing that the factor

(Ic(y1) + Dk\k—l[gk(yﬁ}) (4.65)
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in %F{ki?ylﬂ does not depend on ¢(-), it holds that

0 Fi[h, g] 9 exp(e[g]) ;
— =— (] + Dyip_1[€
Dl ve} |y 2y} ( c(y1) klk—1] k(?h)])
9 (4.66)
= exp( H (IC Yi) + Dj—10r (yz)])
i=1
The previous result suggest the following general formula
0 Filh,g ~
OB gl expla) TT (fet) + Deuale)))  a67)
y h=1,g=0 vy

which can be proved by the inductiony = {y1,...,v:} =y ={y1,-.-,Yitr1}
Setting g = 0 yields to the final expression of the denominator

aFk[hag]
oy

= exp(l0]) (o + Dy lle]) . (168)
h=1,9=0

step 2: Computation of the numerator

The objective is to compute

aFk[hvg]

B 0 exp(Lg[h])
d(yu{z})

h=1,9=0 ) (yu {x})

0 [aexpug[h])
h=1,g=0 dy o{r}

hzl] g:().

(4.69)
Hence, the functional derivative in (191) is splitted in two different func-
tional derivatives: the former is in {z} while the latter is in y. Note that,
since the differentation is order invariant, it is also possible to perform the
differentation by taking first the derivative in y and then in {z}, but this
strategy leads to more complicated computations, hence is not considered in
what follows.

Derivative with respect to {z}

Recall the fact that the differentation in {z} acts only on the test function
h(-), while the differentation in y acts only on the test function g(-). In other
words, the two differentations behave like two partial differentations. Given
this fact and according to the first chain rule, the differentation in {«} yields
to

9 exp(i4[h]) _ d exp(eg[h]) 9y[h]
o{zx} deglh)  O{x}

9.1,1h]
d{a}

= exp(ig[h])

(4.70)
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The second factor in the RHS, by linearity, is

%L{i}] (1 ~po(@)+ Zk[gm) Dijp—1(z) (4.71)
Consequently, it follows that
W = expiglh]) (1= po(@) + lgla]) Digpr (). (4.72)

Now, setting h = 1, leads to

0 exp(ty[h])

e = exp(ilg]) (1-pp(@) + Iilgle]) Digpale) (473

h=1
Derivative with respect to y

At this point it remains to evaluate the functional derivative in y of . To
this end, repeat the procedure used to compute the denominator in (1.58).

e case 1: y = @ - Trivially

9 Fy[h, g] 9 [3 exp(tg[h]) ] _ 0 exp(yy[h])
(@ U{z})|p=y “ oo o{az} [, oz} |
—exp (elg]) (1= po (@) + iklgle]) Do ()
(4.74)
e case 2: y = {y1} - By linearity and according to the product rule, it
holds that
0 Fi[h, g] [6 exp(tqlh ]
O ({y1t u{z}) [y ‘9{?/1 5{55} h=1
[exp ) (1= (@) + Iilgla]) Digpa ()]
3 fry Lo Gl (1= po(@) + 8lgle]) | Digpr (@)
= exp(u[g]) Tg] Dyji—1(x)
(4.75)
where, in order to simplify the notation, the following functional is

defined

Tlg) 2 (Io(ys) + Dy [le(y)) (1= po(@) + Eilglel ) + Gy )
(4.76)
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e case 3: y = {y1, y2} - According to the definition of iterated functional
derivative, holds

3Fk[h g l: 8Fk h g ]
O ({y1, 92} U{z}) |12 a{yz} O ({yr} U{a}) hmy
[exp [9] Dijp—1 ()]
5{ 2}
_ el Tld e
o o{yy T
_ 0Tlg]
— exp(ul)) (014 + a{}) Dige-1(2)
where the shorthand U[] is defined as follows
2
Ulg] = (Zl:[l(fc(yi) + Dkk—l[&c(?h)])) (1= pp(x) + li[gla]) (4.78)
+ (Ic(y2) + Digr—110:(y2)]) b (1] 2)
and
T8 = Uen) + D b)) Banle) . (479

Now focus on the sum Ulg] + g{:;[g]] which is

2

Ulg] + g{j;}[ﬂ = <H(IC(Z/¢) + Dk|k—1[gk(yi)})> (1= pp() + flgl2])
i=1

+ (Io(y2) + Dipp—1[fr(y2))) (1] )
+ (Ie(y1) + Dyji—1 (€ (1)) O (y2]2)

(4.80)
The sum, say S, of the second and third terms can be written in the
following form

: 5 U (y1])
S = Io(ys) + Dy 00 (yi -
(il—ll( c(i) + Drjr—1[Cr(y )])) []C(yl) + D1 [0x(y1)])

Ce(yal) ]
Ic(y2) + Dy [0x(y2)])

- 2 | 5 2 Oy (yi|)
= (H(Ic(yl) +Dk|k1[€k(9l>])> (Z Ic(y:) [&(w)]))

i=1
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Hence it follows that

({Zﬁy}? 5]{x}) = exp(u[g]) (H(Ic(yi) + DMM[Z,C(%)]))
- O (yil)
— Al
X ((1 pp(z) + kg\ +;Ic (yi) + Dijp— 1[5 (yi)D>
X Dyj—1(2)
(4.82)

The previous results suggest the following general formula

d Fylh, ]
a(yﬂ{g) = expllg) (E(Ic(y) + kawkwﬂ))

gk(y|$)
((1 — pp(2) +£k[9|$ + % Ic(y) + Dk|k—1[gk(y)]>

X Dyjp—1(x)
(4.83)
which can be proved by the induction 'y = {y1,...,4:} =y ={y1,- -, ¥it1}
Setting g = 0 yields to the final expression

) Bulyle) - 48
X <(1 pp(x)) + y%; Io(y) + Dk|k—1[gk(y)]>

step 3: Final result
By dividing (1.68) with (1.84), it turns out, as claimed, that

ka(x)((lpD(:c)HZIC felylz) )Dkk_lm

where the PHD likelihood A(-) is defined as follows

A(z) £ (1 = pp(x)) + Alylo) (4.86)
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with

Fivla) & Ui (o)
Ablz) yzé; Ic(y) + Dk\kq[gk(yﬂ- (457

O

The result can be interpreted as follows: the corrected PHD Dy, (+) gets high
values in those location & where the sensors are blind (i.e. the probability of
miss detection 1 — pp(z) is high) or where are near at least to one reliable
measure y (i.e. A(z) is high). A measurement y is reliable in z if and only
if:

e the pseudo likelihood f4(y|z) £ pp(x) lk(y|z) is large, i.e. if the spot z
is well observed by the sensors (pp(x) is large) and the measurement
y is actually near (according to the intensity of the sensor noise) the
spot z (k. (y|x) is large);

e it is likely that the measurement is generated by an object and not by
clutter (i.e. Ic(y) is small with respect to

Do lfe@)) 2 [ Bylu) Dips(w) dw (489
which is a pseudo expected value of £;(y|X) weighted by Dyj—1()

and thus a sort of estimate of the event 'y is generated by an object’).

On the other hand, the corrected PHD Dy (-) gets low values in those
location = that are far from any reliable measurement.

4.5 Gaussian mixture PHD filter

4.5.1 PHD filter implementations

There are two ways to translate the standard PHD filter in an algorithm
executable by a computer.

1. Particle approximation: the idea is to approximate the predicted
and the corrected PHDs as linear combinations of delta densities, i.e.

v v
Dyjp—1(z) = Z wiuH 5m;'€‘k_1 (2) Dy () Z wi\k 6mi|k(x)

= | = (4.89)

for suitable sets of predicted particles {w}c‘k_l,:cz‘k_l};’:l and cor-

rected particles {wzl k,le «}i—1, which are computed according to the



4.5 Gaussian mixture PHD filter 69

prediction and correction steps of the PHD filter. Note that the PHDs
are not normalized functions, so the importance weights w};l k717wlz;:\ &
does not sum to the unity but rather to Njjz—_1, Ny (thus, the ap-
proximation is not a mixture of deltas but a linear combination, with
non-negative coefficients, of deltas).

The resulting algorithm is called Sequential Monte Carlo PHD filter
(SMC-PHD filter).

The SMC-PHD filter leads to good performance if the number of par-
ticles v (which is usually fixed in time) is sufficiently large. Here the
term large strongly depends on the SNR, the dimension of the object
states and the number of tracked objects. Tipically the SMC-PHD
filter is computationally demanding because the number of particles v
involved is large.

2. Gaussian mixture approximation: the idea is to approximate the
predicted and corrected PHDs as linear combinations of Gaussian func-

tions
Vk|k—1

Dyja(@) & Y whyeey N5 2y, Py
=t (4.90)

Vk|k
Dyjp(z) ~ Zwlzc\kN($§$Z|k7P;z|k)
i=1

for suitable sets of predicted Gaussian components

{wi\k—p (x2|k—1apli\k—1)}:i‘1}c_l (4.91)

and corrected Gaussian components

{Whiio Thy Phy) Hist (4.92)

which are computed according the prediction and correction steps of
the PHD filter. Once again, the importance weights sum to Nyjx_1
and Ny, thus the term Gaussian mizture is used improperly as a
shorthand for linear combination of Gaussians.

The resulting algorithm is called Gaussian mizture PHD filter (GM-
PHD filter).

For an individual element of the mixture, in principle, the GM-PHD is
more computational demanding than the SMC-PHD filter since it re-
quires the computation of the additional parameters Plél 15 P12| . (the
predicted and corrected covariances of the Gaussian kernels). However
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in general the GM-PHD achieves good performance for relatively small
number of Gaussian components vy, _1, Vg, (note that now these num-
bers are not fixed in time) with respect to the number of particles v
required by the SMC-PHD filter. Moreover, the GM-PHD filter makes
some particular assumptions that allows to compute algebraically the
predicted and corrected parameters of the Gaussian kernels by means of
a standard Kalman filter (thus, with a very simple procedure). Hence,
the GM-PHD filter tends to be less computationally demanding than
the SMC-PHD filter, but, due to its additional assumptions, turns out
to be more restrictive than the SMC-PHD filter.

The focus of this thesis is on the GM-PHD filter, which will be derived in
what follows. Both the GM-PHD predictor and the GM-PHD corrector rely
on the following well-known result about the product of Gaussian PDFs

Theorem 4. (Foundamental Gaussian identity) - Let C' be a p X n matrix
with p < n, let R and P be p X p and n X n covariance matrices, then

N(y; Cx, R)N (8, P) = N(y; §; S)N (: Q71 ¢, Q71 (4.93)

where S, ¢ are given by the Kalman predictor (standard form) while €2, ¢
are given by the Kalman corrector (information form)

S 2 R+ CPC Q2P+ CRC

4.94
g&Ci &P i+ C' Ry (499

4.5.2 GM-PHD predictor
Theorem 5. Consider the following assumptions:

e the corrected PHD is a Gaussian mixture of the following type

Vk—1|k—1

Dy_qjp—1(z) = Z wiic—1|k—1N($§$Z—1\k—1aP;i—l\k—ﬂ (4.95)
=1

e the single-object motion model is linear-Gaussian, i.e. Xy11 = A X+
Wi with Wy, ~ N(0, Qg), thus the transition density considered is of
the form

Prlp—1(|w) = N (z; Ax w, Qr) (4.96)

e the survival probability is constant all over the surveilled scene, i.e.

ps(z) = ps Ve eR? (4.97)
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e the PHD of the birth set is a ” Gaussian mixture” of the following type
by

Ip(x) =) BN (z:0h; BY) (4.98)
i=1

Then, the predicted PHD is still a " Gaussian mixture”, more precisely

Vk—1|k—1

Dyjp—r() = Ipi(@) + > whp y N@52hyy, Plps) (4.99)
=1

where the number of predicted Gaussian components is Vklk—1 = bk +Vp_1jk—1
and for every survived Gaussian component, i.e. for i = 1,2,...,vp_qp_1,
the following facts hold:

e the predicted weight is given by
wi\kfl = Ds w;;,l‘kfl (4100)

e the parameters of the Gaussian kernel are given by the Kalman pre-
dictor which, in standard form, are the followings

%
Thip—1 = Ak Th-1]k-1

) . / (4.101)
Pr—1 = Ak Py_q g1 Ak + Qi
Proor
The theorem is proved if and only if
Vi|k—1
Dy —1j—1[@rjp—1(2)] = Z W1 N (@5 21, Pryp—1)- (4.102)
i=1

In order to do that, observe that the pseudo-transition density is

Prlp—1(x|w) = ps Prip—1(z|w) = ps N (z; Ap w, Qr). (4.103)

As a consequence, it holds that

Dy 11 [@rjp—1(2)] = /Sbk|k71(x‘w) Dy, _qjp—1(w) dw
Vi—1|k—1 (4104)
£ Z w;c|k71 /N($§Ak w>Qk)N(w§‘T§<:71|k71aplzf1|k71) dw

i=1
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where w};l b1 £ g w,ifl‘ w1+ Now, for the fundamental Gaussian identity,
it general holds that

N (z; A w, Qi) N (w; x271|k71? Pli71|k71) = N(z; xi\kfl; Plff'|k71)~/\/‘(w§ 13 X)

(4.105)
for some suitables moments p, 3 and for x};l b1 P,il x_1 given by the Kalman
predictor

i 2 i
Lhlk—1 = Akxkq\kq

e i / . (4.106)
Phie—1 = Ak Py_yjp—1 Ay + Qe

Thus, in conclusion, it follows that the PHD of survived objects Dj,_q,—1 [Qﬁklk—l (2)]
simplifies to

Vk—1|k—1

Di_yjp—a[@rp—1(@)] = Y wipe N (@5 215 Phip) /N(wﬁi;z) dw
=1

=1

Vik—1|k—1
= Z w2|k71N(m5$2\k71§P1i\k71)
i=1
(4.107)
as claimed. O

4.5.3 GM-PHD corrector
Theorem 6. Consider the following assumptions:
e the predicted PHD is a ”Gaussian mixture” of the following form

Vk|k—1

Dyjpp—1(2) = Y Wiy N (@5 @iy Pjgeoy) (4.108)
=1

e the single-object measurement model is linear-Gaussian, i.e. Y, =
Cp Xk + Vi with Vi ~ N(0, Ry), thus the considered likelihood is of
the form

O, (y|lw) = N(y; Cr w, Ry) (4.109)

e the detection probability is constant all over the surveilled scene, i.e.

po(r)=pp  VreR" (4.110)
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Then, by denoting yx = {y1,...,Ym, |, the corrected PHD is

Vk|k—1 Vilk—1 myg
Do) = Z wimN(ﬂc;meém) + Z szfk (x;'r;c)fk’Plz\k)
i=1 =1 j=1
(4.111)
where the number of corrected Gaussian components is vy, = vy, e(1+my)
and for every predicted component i = 1,2, ..., vy, and for every measure-
ment j =1,2,..., my, the following facts hold:
e the corrected weights are given
— for the undetected objects, by
wi\k 2 (1-pp) wi|k71 (4.112)

— for the detected objects, by

iioA pD7Uﬁk—1-A/(yj§?@k—1aSi)
wk’fk A - (4.113)
k|k—1
To(ys) + X0 o wh N (v vk 13 5E)

where QZ\k—lv S,i‘k_l are given by the Kalman predictor, i.e. in
standard form
Si £ Ri + Cp Py C,
o KRR (4.114)
~1 Ay 7
Yklk—1 = Ckxk\kq

e the corrected parameters of the Gaussian kernels are given

— for the undetected objects, by the predicted parameters (= correc-
tion bypassed)
Pl £ Py
Rk R (4.115)
7 PAN 1
Tilk = Tklk—1
— for the detected objects, by the Kalman corrector, i.e. in standard
form ' 4 .
Ly, = Py, Cy (Sk)
Ii\k & (- L?ccwpli\kq (4.116)
{E;"Jk 2 x?c“c—l + L}‘c(yj - fgi“ﬂfl)

PROOF
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The objective is to compute the PHD correction step under the actual sim-
plifying assumptions. First of all, trivially, since the probability of detection
is constant and the notation considered to express the multimeasurement is
Ve = {Y1,---,Ym, }, it holds that

mi
pp Lk (y5]7)
Dy(z) = + PD J D1 (x
K|k () — D) ZIC W)+ Deneslpo Gl | D4 1()
pp L1 (y;)
1—pp)D z) + Dyjp—1 (2
= (1= 70) Deea ch<yj>+pDDk|k_1wk<yj>J bik-1(2)
ADMk 1(@)
ADkD‘k 1( )
(4.117)

the corrected PHD Dy (-) thus is given by the sum of two distinct PHDs:
the PHD of undetected objects Dk|]l3 1(+) and the PHD of detected objects

Do ()-

Undetected objects PHD

Recalling the Gaussian form of the predicted PHD yields to

Vk|k—1
DII;I|]I:<:)($) (1-pp) ( Z wk\k (N x;c|k17PIz|k1)>

. (4.118)
= Z wlzc|k N (z; I;quiz\k)
i=1
where are defined the undetected parameters as follows
w;ﬂk 2 (1-pp) w;lc|k71
P = Pl : (4.119)

7 A
Liik = Tk|k—1



4.5 Gaussian mixture PHD filter 75

Detected objects PHD

The Gaussian form of the predicted PHD implies

mp Vi|k—1
s (y5]2) ' ' '
DP (z) = E PD J E w} N(xz; 2} , P!
k|k( ) e IC(yj) D Dk\k—l[gk(yj)] P klk—1 ( k|k—1 k\kfl)

Vilk—1 my

PD Wiy i i
Z Z To( | Ek(yj|l')./\/.(fﬂ;$k|k_1,Pk‘k_l)

= = Lo(y;) + pp Dy [0 (y;)]

(4.120)
By exploiting the Gaussian form of the likelihood and according to the
foundamental Gaussian identity, the kernel of the PHD can be written in
the following equivalent form

ék(yjkv)N(x;‘TZ|k—1’PIi\k—1) =N (y;; Crw, Ry) N(fcwzm—upzi\kq)

=N (y;; Crx, Rp) N (x;xi’ljk_l,P,i‘k_l)
(4.121)
where gj,il b1 S¢ are given by the Kalman predictor

Sk & Ry, + Ci Py, Oy,
P (4.122)
Yelk—1 = Ck$k|k—1

while P,i‘ Iy fok are given by the Kalman corrector (in the standard correction
gain form), i.e.
-1

Lj, £ Py, Cy (i)
Pl & (I = Li.Cy) Py, (4.123)
xsz = xi:\k—l + L, (y; — ?Qi|k_1)
hence it turns out that

s o po g N (9559 St

D/ .\ _
Dy (z) = Z Z Ic(yj) + po Dijr—1[le(y))]

i=1 j=1

Lo %
N(x,xklk_l,Pk‘k_l)

(4.124)
Now focus on the linear functional Dy,_1[fx(y;)]. Recalling the Gaussian
forms for the predicted PHD Dy,;,—1(+) and for the likelihood £ (-|w), it holds

)
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that

D1l (y;)] £ /ek(yﬂw) Dyjp—1(w) dw
Vg|k—1

= Z W k-1 /N(y;Ckw,Rk) N(w5z;c\k—17pli\k—l> dw
=1

(4.125)
Once again, according to the fundamental Gaussian identity, the integrand
can be written in the form

N (y; Crw, Ry,) N(w;xm_l,P;é\k_l) zN(y;@2|k_1,S£) N (w; iy, Py )

(4.126)
where ply,, P are suitable moments, thus
Vk|k—1
Depeltn(us)] = 3 whr [N (vdlyeoss S5) N (wssiy, Piy) do
=1
Vk|k—1
= Z Wi N (%@Z\k—uSILf)
=1
(4.127)
Consequently the detected PHD gets the form
VElk—1 mp .o .o
DR(@)2 3 S wih N (mai Plpsn)  (4128)

i=1 j=1

where the corrected weights are defined as

- PD W), N(y-;z)i - ,S;i)
JERION Bkt T AT PRIk (4.129)
Y Vklk—1 L .t L
To(y;) + .20 prklk—lN(yj’yk\k—l’Sk>

Final result

Finally, by summing DYP(-) and D (-), it turns out that

Vglk—1 Vklk—1 myp
_ i ) i 4,J c b i
Dy (x) = E Wi N (z’xk\k’PIf\k) + E : wk|kN (‘T’Ik\k’Pklk)
i=1 i=1 j=1

(4.130)
as claimed. O



4.5 Gaussian mixture PHD filter 77

4.5.4 Postprocessing

The number of predicted hypotheses is vyp_1 = b + Vg_1)r—1, thus grows
exponentially in time. In the same way, the number of corrected hypotheses
is Vg = Vkjp—1(1+myz), wich grows exponentially in time (even more rapidly
then v;—1). In order to mantain the algorithm computationally feasible,
particular techniques are employed after the prediction and correction steps
of the GM-PHD filter to limit vy;_; and vy, below a desidered treshold
Umax - Assume that the corrected or predicted hypotheses are in the form

{(w', 2", P}, (4.131)

Such techniques are essentially the following three (performed in the same
order as presented below):

e Pruning: The irrelevant hypothesis are discharged. Here irrelevant
means that the relative weight of an hypothesis is smaller than a preset
threshold.

if w® < 7y then (w', 2, P") is eliminated (4.132)

Note that the weights, since they sum to a quantity that it is not
necessarily the unity, don’t need to be normalized to the unity after
the pruning of the irrelevant hypotheses. Rather, if one doesn’t want
to loose the information about the volume of the PHD then the weights
can be renormalized to the value of the volume of not pruned.

e Merging: if two or more hypotheses are similar then they can be
approximated with a suitable unique hypothesis. More precisely, here
similar means that if the merging distanceﬂ between two hypothesis
i,

d(i,j) £ |lz* — 27[| 3. (4.133)

is smaller than a preset threshold then the hypotheses i, j are merged
into a new single hypothesis k

if d(i,7) < 72 then (w',z?, P?), (w*, ¥, P*) are replaced by (w",z*, P*)
(4.134)

IThis is not a distance because, due to the weight matrix P?, is not symmetric:
d(i,j) # d(j,i). However, if ¢ and j are corrected hypotheses for detected objects then the
covariances P!, PJ are the same and the term merging distance d(i,7) assumes the real
meaning of distance
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where the merged hypothesis is defined as follows

wh £ ' + w?
kA wiz? + wixd
Wi+ wd (4.135)
w' P 4 w? PI , o .
pF A T + (2" —2?) (" — 27

xT

e Capping: If after the pruning and the merging procedures the number
of hypotheses is still too large, then only the v,,x most relevant hy-
potheses are kept in the PHD. More precisely, suppose that the pruning
and merging procedure reduces the number of hypotheses from v to
V' < v, but still is ¥/ > vpax. Suppose to have ordered the weights
from the bigger, w', to the smallest, w”'. Then, the capping procedure
defines the post-processed PHD as

Vmax

D(z) & Z w N (z; 2", PY) if v/ > vpay. (4.136)
i=1

On the other hand, if v/ < vy, then, naturally, all hyphotheses are
kept in the PHD, i.e.

D(x) & Zwi’/\/(x; 2’ P if V' < Upax (4.137)
i=1

4.5.5 Estimate extraction

After the post-processing of the corrected PHD, one can extract the estimate
Xy, of the actual object set X;. The estimation procedure, which is an heuris-
tic (i.e. is not Bayes-optimal) that resembles a sort of MAP estimation,
operates as follows:

e step 1: Estimate the actual number of objects Vi present in the scene
as

Ni 2 Egp [ Xel] £ /Dk\k(ﬂﬁ) dx

Vi|k
= wh N (s ak,, Phy) | de
/ (2 o Rk ) (4.138)
Vi|k Vk|k
=Yl [ Mo Pig) do =3 wy
i=1 i=1

=1
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e step 2: Given Nk, define the estimate as the locations of the Ny, largest
peaks of the corrected PHD Dyi(-). Due to the Gaussian represen-
tation, if the weights are ordered from the bigger to the smaller then

such locations are :E,lc‘k, e xﬁ’;, then the estimate is

. A
Xk = {xk|k}i:k1‘k' (4.139)

Note that the Gaussian representation provides a natural representa-
tion of the uncertantly affecting the single-object estimates le > Which

is the relative covariance matrix P15| .
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Chapter 5

Extended object PHD filter
theory

5.1 Summary

In this chapter the PHD filter for extended object is derived. As mentioned
before, the unique difference between the standard PHD filter and the ex-
tended object PHD filter is in the measurement model, whereas the extended
object PHD filter does not consider the single-measure semplification. Due
to this fact, the corrected PHD computed by the extended object PHD gets
an expression that is more complex than the expression of the corrected
PHD computed by the standard object PHD. In particular, the new cor-
rected PHD now depends on the partitions of the set of measures and this
opens a new clustering problem. The chapter is structured as follows

e in the first part some essential concepts about the partitions of a finite
sets are briefly discussed;

e then the measurement model for extended object is introduced in its
exact definition and in its approximation, called approrimate Poisson
body (APB) model, that permits to obtain closed formulae;

e finally the new PHD corrector is derived and, after that, also the rela-
tive Gaussian mixture implementation is discussed. Moreover, a simple
and effective clustering algorithm is given.

81
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5.2 Partition of a finite set

5.2.1 Definition

Definition 6. Let x = {z1,...,2,} be a finite set on R™. A partition P of
the finite set x is a set of the form

P = {wi,wa,...,wip} (5.1)
where wi, wa, ..., wyp| are subsets of x, called cells of P, such that:
1. every cell is not empty, i.e. w, # @ for all p=1,2,...,|P|;

2. every cell is disjoint from the others, i.e. w; Nw; = @ if i # j;

3. the union of the cells gives the starting set x, i.e. U]@l wp = X.

Given a finite set x = {z1,...,x,}, there are two particular partitions of x:
the minimal partition, wich is composed by only 1 cell w; £ x

P = {x} (5.2)

and the maximal partition, which is composed by |x| = 1 cells w; = {x;},
A
o wy = {ay}

P& {zh o {2} (5-3)

The minimal partition is the partition of x with smallest cardinality (mini-
mum number of different cells), while the maximal partition is the partition
of x with greatest cardinality (maximum number of different cells), thus in
general hold for a generic partition P

1< [P| < I (5.4)

the intuition suggests that there is only one minimal partition and only
one maximal partition. On the other hand, it is possible to find different
partitions with a cardinality that it is not maximal or minimal.

Two relevant problems regarding the partition of a finite set are: 1) given
a finite set, count the number of its possible partitions; 2) given a finite set,
find a systematic way to list its partitions. These two problems will be
addressed in what follows.
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5.2.2 Number of partitions of a finite set

The number of different partitions that is possible construct from a finite
set x is given by the so called Bell number Bj, of order |x|. Such number is
defined by the recursion

B, 2 Z (;) B, (5.5)

§=0
initialised by B; £ 1.

Observation 1. The function i — B; grows rapidly, for example the first
eight Bell numbers are

Bi=1 By=2 B; =5 B, =15 (5.6)
Bs =52 Bg =203 B; =877 Bg=4140 - '
In comparision, the first eight outcomes of the exponential function i — 2°

are )
21 =2 22=4 23=38 24 =16

20 =32 260=64 27=128 28 =256 (5.7)
while the first eight outcome of the factorial function ¢ +— ¢! are
| = | = | = | =
=1 20=2 3'=6 41 =24 (5.8)

5!=120 6!=720 T7!=5040 8!=40320 -

A more convenient way to compute the Bell numbers is the following
i
B; = ZSM (5.9)
j=1

where S; ; is the so called Stirling number of the second kind of order 1,7,
and is given by

1 Y
Sij = ﬁ;(*l) (2) (G—mn" (5.10)

The Stirling number S; ; counts the number of different partitions with |P| =
J cells that is possible to construct from a finite set with |x| = i elements.
Thus, equation (12) states simply that the total number of partitions is the
sum of the number of partitions with 1 cell (which is one according to the
intuition), the number of partitions with 2 cells, ..., the number of partitions
with i cells (which is one according to the intuition).
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One can show that the Stirling numbers satisfy the recursion
Sit1,5 = Sij—1+ 7] Sij (5.11)

As a consequence, the Bell numbers can be computed also with the following
recursion

Bix1=Bi+ Y jSi;. (5.12)
j=1
To see why, consider
i+1 i+1
Bis1 =) Sit1; = (Sij-1+75i;)
I=t =t (5.13)
i+1 i+1

= Z Sij—1+ Zj Sij
j=1 j=1

Now, by defining S; o £ 0 for all i (= the empty set is not a partition of a
finite set) and by defining S; ; £ 0 for all j > i (= the maximal cardinality
of a partition is the cardinality of the considered finite set), it holds that

it1 i
Bt = E Sij—1+
Jj=2 J

§Si; =3 _Sij+ Y iSi;j=Bi+Y jSi;
1 j=1 j=1 j=1

(5.14)

5.2.3 Listing partitions

There is a simple recursive procedure to list every partition of a finite set x =

{z1,...,2,}. Before tackling the problem, consider the simpler sub-problem

of finding all partitions of a generic subset X" = {x1,..., x|} C x given the

partitions of the ”1 singleton predecessor” x’ C x” where |x'| = [x"| — 1.
Such sub-problem is resolved by the following two-step procedure:

e step 1: for each partition P’ of X’ append the singleton cell w” £ {z;}
to get the partitions of x”

P EP UW =P U{z,} (5.15)
e step 2: for each partition P’ of x’ and each cell w' € P’ of the partition

P’ considered, replace the cell w' with the new cell W' Uw"” = w'U{z;}
to get the remaing partitions of x”

Py L (PAW)UW Uw') = (P \W)UW U{e;})  (5.16)
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It is clear that the step 1 and step 2 in general produce different partitions
of the new finite set x”. Moreover, step 1 and step 2 exhausts all of the
partitions of the new finite set x” because they result in exactly Bj,| different
partitions of x”, which is the total number of partition of x”.

Theorem 7. Step 1 and step 2 produces all the B,/ partitions of the finite
set X £ x' U {x,}.

PROOF

To see why this fact holds, consider the number of partition generated by
step 1 and step 2

Bstep 1,step 2 £ Bstep 1+ Bstep 2 (517)

where Bgicp 1 is the number of partitions generated by step 1 and Biggep 2 is
the number of partitions generated by step 2.

Trivially, the number of partitions generated by step 1 is equal to the
number of the given partions, thus

Bstep 1= B\x’| (518)

On the other hand, finding the number of partitions generated by step 2 is
more complicated.

Consider the minimal partition of the given set of partitions. Such par-
tition contains only 1 cell (which is w' = x’) and step 2 produces for this
partition 1 new partition. Thus let

Bstcp 2,1 cell £ 1 (519)

be the number of new partition generated by step 2 in this first case. Now
consider the partitions with 2 cells of the given set of partitions. For each
of theese partitions, step 2 produces 2 new partitions. Since there are SM,Q
different partitions of x' with 2 cells, the total number of new partitions
generated by step 2 in this case is

Bitep 2,2 cells = 2 S)| 2 (5.20)

With the same reasoning, consider the partitions with 3 cells of the given set
of partitions. For each of these partitions, step 2 produces 3 new partitions.
There are S| 3 different partitions of X with 3 cells, so

Bstcp 2,3 cells £ 3 S|x/|73 (521)
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At this point it is clear that step 2, when considering partitions with j cells
of the given set of partitions, generates

Bstep 2,7 cells £ ] S\x’|7j (522)

new partitions. The total number of new partitions generated by step 2 is
consequently
x| x|
Bstep 2 = Z Bstep 2,5 cells — Z] S\X’|,j (523)
j=1 j=1
where it is noted that Sj; = 1 (= there is only one maximal partition),
thus Bgtep 2,1 cell = 1 S]w|,1- As a consequence,

x|

Bstep 1,step 2 — B\x’| + Z.j S|x’\,j (524>

j=1
from which follows that
Bstcp 1,step 2 = B|x/|+1 = B|x”\ (525)

S0, as claimed, step 1 and step 2 exhaust all the partitions of the new finite
set x”. 0

5.3 Measurement models for extended objects

5.3.1 Single extended object

The key concept used to generalize the standard model to extended objects
is that an extended object, if detected, produces a finite set of measurements
scattered around its surface. A single measurement can be seen as the result
of the detection of a single reflecting point X, which behaves like a point-
object in the standard measurement model, belonging to the edge of the
extended object surface.

Thus, if X} is the state of a single extended object (that is the centroid of
the object) then the extended object is modelled as the collection of reflection
points

Xe+ X1 Xp + XG0 (5.26)

disposed around the centroid Xj. Note that the number of reflection points
E(X) can vary during the time with Xj. Abbreviate the probability of
detection of the reflection point X + X°€ as

ph(Xk) £pp (X + Xf)  Ve=12,...,B(Xy) (5.27)
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and in the same way abbreviate the likelihood to observe a measurement Y
if the reflection point considered is X}, + X} as

gi(YHXk) éék(Yk\X;mLX,ﬁ) Ve= 1,2,,E(Xk) (528)

Then, the set of measurements generated by an extended object X} is mod-

elled as
E(Xg)

h(Xx) = [ he(X) (5:29)
e=1
where h®(Xj) is a Bernoulli RFS with parameters p§ (Xy) and £5(-|Xy).
Assuming independence between Bernoulli components, the PGFL of the
set of detections generated by the extended object X is

E(Xk)
GRmxd 2 TT (1 - wb(Xe) + & InIX) (5.30)
e=1
where 05 £ pg (5.

In brief, the result is that the considered model assumes that an extended
object is the collection of multiple reflection points and that every reflection
point gives rise to a Bernoulli RFS of detections (likewise the state of a
point-object in the standard measurement model).

By merging the detection set with clutter (assumed to be Poisson), turns
out the complete measurement model for a single extended object

E(X)
Yi=hX)UC=| [J h“(Xi) | UCk (5.31)
e=1

in conclusion, the PGFL of the set of measurements in this case is
Ly[h|X3] = G} [h]X3] G} []

B(Xy)
=11 (1—pE(Xk)+Zz(h|Xk)> exp(lclh — 1]) (5.32)

e=1

5.3.2 Multiple extended objects

Now assume that multiple extended objects are present in the scene at the
same time step k. In this case, for every extended object in X; the single
extended object model holds, so that

E(X)
hXe)= [J hx)= J | h(x) (5.33)

XeXy XeX, e=1
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Hence, the general measurement model for extended objects is

E(X)
Ye=hXn)UC={ |J U rx)|uc (5.34)
XeX, e=1

and, assuming that the clutter is Poisson, the relative PGFL is

E Kk
mmm%ﬁwm%&[ﬂ@%+mm1em%wln
! (5.35)

5.3.3 Poisson approximation

One can show that a multi-Bernoulli RFS composed by a great number of
identical Bernoulli components with small probability of existence can be
well approximated by a Poisson RFS.

Due to this fact, the single extended object multi-Bernoulli PGFL can
be replaced by the simpler Poisson PGFL

G [P Xx] = exp (Ip[h — 1| X)) (5.36)
if the tracked extended object satisfies the following properties:
e every reflection point e is characterized by similar parameters pf, Ek;
e the probability of detection pf, is small;
e the total number E(X}) of reflection points is big.

The Poisson model has one remarkable drawback: by considering the
Poisson model (51), and assuming Ip(:|Xy) > 0, it holds that

]P(Yk 75 @le) =1—exp (—ID[1|Xk]) >0 (537)

which means that the probability of the event Y # @ given X} cannot be
exactly zero. In other words, the Poisson approximation cannot represent
the situation where an extended object does not produce any measure (i.e.
the extended object is completely occluted). This limitation doesn’t occour
with the multi-Bernoulli model (45), in fact for the multi-Bernoulli it holds

that
E(Xk)

P(Ye # 21Xi) =1— ] (1 -pb(x0) (5.38)

e=1
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so that Y, # @ given X} can be a zero-probability event if every re-
flection point is not detected almost surely, that is pf(Xy) = 0 for all
e=1,2,..., BE(Xg).

In order to resolve this representation problem, define the probability of
the event ’the extended object is in X}’ as pp(Xy) and consequently define
the 'corrected Poisson’ PGFL of the set of detections as

GR[h|Xk]) = 1 — pp(Xk) + pp(Xk) exp (Ip[h — 1| X)) (5.39)

now the correct model defines the probability of the event Y # & given X
as
P(Yr # @|Xy) = pp(Xk) (1 — exp (—Ip[1]Xk])) (5.40)

which can be exactly zero (if pp(Xy) = 0, i.e. if the extended object is not
present in Xj).
The likelihood PGFL of Yj given X takes the form

Li,[h| Xi] = GR[h| X1 G5 [h] '

= [1 = pp(Xi) + Pp(Xk) exp(Ip[h — 1[Xi])] exp(Ic[h — 1])
(5.41)
Hence by assuming that every extended object satisfies the approximation
hypotheses, the multi extended object likelihood PGFL is given by

Li[hIXy] = (GR IR GE (1)

=[1 - pp + pp exp(Ip[h — 1)) exp(Ic[h — 1]) (5.42)

This equation represents the so-called approrimate Poisson-body model
(APB model) for extended objects. The simplest multiobject filter for ex-
tended objects is the APB-PHD filter, which is based on the simple APB
model.

5.4 PHD filter for extended objects

5.4.1 Derivation workflow

The derivation of the PHD filter for extended objects follows the same pro-
cedure as the the standard PHD filter:

e step 1: according to the considered motion model, define the PGFL
form of the multiobject Bayes predictor;

e step 2: via functional differentation, extract the predicted PHD from
the predicted PGFL;
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e step 3: according to the considered measurement model, and assuming
that the predicted MPDF is Poisson, define the bivariate PGFL used
to represent the corrected PGFL;

e step 4: via functional differentation, find the expression of the cor-
rected PGFL from the bivariate PGFL;

e step 5: via functional differentation, extract the corrected PHD from
the corrected PGFL.

Since the standard PHD filter and the PHD filter for extended objects share
the same motion model, only the corrector of the PHD filter for extended
objects will be derived. In other words, step 1 and step 2 have already ad-
dressed, so that only step 3, 4, 5 will be described in what follows (assuming
the measurement model for extended objects rather than point objects).

5.4.2 Bivariate PGFL for extended objects

Recall that the bivariate PGFL Fy[-, -] used to represent the multiobject
Bayes corrector is defined as follows

Fulhig) 2 [ 1" Lilglw] pcs(w) dw. (5.43)

According to the APB measurement model, the bivariate PGFL reduces to
Filh,g] = /hw [1 = pPp + pp exp(Iplg — 1])]" exp(Iclg — 1)) prjk—1(w) dw

— exp(Iclg — 1) / {1 (1= + i exp(Tplg — 1))} Pige—i(w) dw.
2
= exp(lclg — 1]) Ggg-1[h (1 — pp + Pp exp(Iplg — 1]))]

(5.44)
Now, in order to simplify the differentation of such PGFL, assume that the
predicted PGFL Gy ,_1[] is Poisson for some predicted intesity function

Dk\k—l(')v 1e
Grj—1[h] = exp (Dk|k—1[f~l - 1]) . (5.45)

Consequently, the bivariate PFGL assumes the following Poisson form
Filh, g] = exp(Iclg — 1]) [exp (Dk|k—1[7l - 1])];1:;1(17;‘31,4”5]3 exp(Ip[g—1]))
= exp (Ic[g — 1] + Dyjp—1[h (1 = pp + pp exp(Iplg —1])) —1])

£i[h,g]

(5.46)
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5.4.3 Multiobject Bayes corrector for extended objects
Recall the general PGFL form of the multiobject Bayes corrector

3F§[h,g]

B 0

Grjilh] = W~ (5.47)
‘h 1,9=0

According to this expression, the corrected PGFL Gy x[-] is given by the
following procedure:

e compute the general partial functional derivative 8%’“7[3’9];
g

e given the general expression of the functional derivative M, find

dgy
the corrected PGFL.
Theorem 8. Let Fy[h, g] be the APB bivariate PGFL, then
8Fk h , g
0[ ] = Fie[h, g 1LY [ dulhs gl (5.48)

PByweP
where

e the notation P By means that P is a partition of y (consequently,
w € P means that w is a cell of the partition P);

e the cell bivariate PGFL d[, ] is defined as follows

dolhg] & 1+ Dyjp—1[h exp(Iplg *}])pD l,] %f w={y} (5.49)
Dyjj—1[h exp(Iplg — 1]) pp Lu] if w| >1
e the cell likelihoods are defined as follows
() & Dolylz) l(z) = T () (5.50)

Ic(y)

yeEW

Note that here y is a generic measure, while z is the given state of an
extended object.

Proor

The proof is by induction on the number of considered measurements, start-
ing from the simple case y = {y1 }.

Induction base
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If y = {y1}, then due to the first chain rule, it holds that
O Fglh,g] _ dexp(i[g]) O:[g]

= 5.51
By iu} A 0w (55D
The first factor is trivially
dexp(t[h, g]) _
d[,[h7g] - eXp(L[h’ﬂ g}) - Fk[hhg] (5'52)
while the second factor is
OLlh
8 = T+ Duecs b explivly — 1) o)

= Ic(y1) (1 + D1 |:h13D exp(Iplg — 1) ﬁD(yl)}) (5.53)
2 Io(y1) (1 + Dyje—1 [ pp exp(Inlg — 1]) £,,])
2 Ic(y1) diy,y[h. 9]

Now note that the singleton y = {y;} admits only one partition, the trivial
partition P = {{y1}}, which has only one cell, w = {y1}. Consequently,

holds
Z H dw[hhg] = H dw[hvg] = d{m}[h?g} (554)

PE{y1} weP we{{y1}}

consequently, it turns out the claimed formula for the special case y = {y1}

66Fk{[h }g] Filh gl 18 3" [ dulhegl (5.55)
Y1 PHE{y1} weP

so that the base of the induction is proved.

Induction step

assume that the claimed equation holds for y = {y1,...,ym} with an arbi-
trary number m > 1 of measurements
0 Fy.[h, g { }
—— 2% = Flh, g I dwlh, g]. 5.56
ag{yh.“’ym} [ ] C Z H [ ] ( )

PE{y1,..ym} weP

The objective is to show that this relation implies

3g{y1, c s Ymet1}

= Filh,g] 18 vmsh 3 [T duln. g (5.57)
PE{y1,...,Ym+1} WEP
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In order to do that, start by the trival observation
{y17"'7ym+1} = {yh"'?yM}U{ym-‘y-l} (558)

from which follows that

ag{ylv--~7y7rz+1} 69({yla-~-aym}u {ym+1}) ag {y7n+1} ag{ylv---vym}
9 L
= ﬁ Fylh, g] Iéy v} Z H dwl[h, g]
9 Wmt1 PE{y1,....ym } WEP 1
1yeesYm a
S R et K2 7D DRI § Y
9 \Ym+1 PB{y1,...,ym } WEP ]

(5.59)
For the product rule, the functional derivative splits into the sum of two
different terms

OFilhal _ pnwy | OFilhogl 5~ T g
ag{yla e Yme) ¢ 9y {Ym+1} PB{y1,.-,ym } WEP
£ A[h,g]

) )
thhgge— 3, [l dulhd
(3'g {ym+1} PBE{y1,....ym} WEP

£Blh,g] ( )
5.60

The first term is

Alh, g) = (Filh 9l Wmi)dy, o [hog) Y. ] dwlh.g]
PBE{y1,....ym } WEP

= Fk[hvg] IC(ym-l-l) Z (dym+1 [hv g} H dW[hv g]) (561)

PE{y1,..,ym} weP

= Filh, g Ic(ymsr) Y I g

PE{y1,. .. ym } WEPU{Ym+1}
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while the second one is

Blhg) = Filhg) S Lﬂdw[h,g]

PB{y1,-ym}

S [0 g g

PE{y1,....ym} \ WP

1 Jdylh,
- i) Zy }(HdW/hg Zd hga{yii};)

PE{y1,.-.,

After some simple functional manipulations, it turns out that
9dylh.g] _ d(Duuslh exp(Inlg — 1) po L))
O{Yms1} O{Ym+1} (5.63)
=lIc (ym+1) dWU{ym+1} [h7 g]

which yields

Blh,g] = Filh, gl Io(Ymer) D ( I1 dvirg 3 W)
Ym} wl/t

PBE{v1,..., w'eP weP

= Fi[h, g] Ic(Ym+1) Z Z H duw[h, g]

PE{y1,-ym} \WEP W e(P\W)U(WU{ym+1})
(5.64)
Consequently,

8Fk[h?g]

{y1:ym}
=1 Alh, g] + Blh,
Og{yrs- - Ymm}t  © [A[h, g] + Blh, g]]

= Filh, g 1o vme) 3 ( [I ol

PEI{yI:---vym} WEPU{Ym+1}

+ 3 II dur [h,g]>
weP w' e (P\W)UWU{Ym+1}) ( )
5.65

Finally, recalling that the set of partitions P 8 {y1,...,ym+1} is given by
{PU{ymr}) U {(P\w)UWU{ym1})}  VPE{y1,....ym}, VWEP
—_——

step 1 step 2

(5.66)



5.4 PHD filter for extended objects

95

lead to the following formula

which closes the induction step and concludes the proof.

Theorem 9. The corrected PGFL is given by

ZPBy HWE'P dW [h}
ZP'Ey HW/EP/ dw

Gryilh] & Fy[h]

Fi[h] £ exp(Dyj-1[(h — 1) (1 = pp + pp exp(—Ip[1]))])

2o )1+ Dyjp—1[h exp(—Ip[1]) pp 4y] if w = {y}
Dyj—1[h exp(—Ip[1]) pp lu] if jw| > 1

Q,

<

=
||>

goa )it Dyj—1lexp(—Ip[1]) pp 4] if w = {y}
" Dy—1[exp(—Ip[1]) pp Lu] if [w| > 1

PRrooF

On one hand, the numerator of the corrected PGFL is

aFakiVW] = | Flh. g 2> T dulhg]
9y g=0 PHBy weP g=0.
= Filh, 012, 3 T] dulh,0
PByweP

The first factor is given by

F[h, 0] = exp(:[0])

a { } _ Fk[h,g] I({jyl,...,ym Ym+1} Z H dw[h,g]
g WY1 -+ s Ymt1 PE{ys,ymir} WEP

(5.67)
O

(5.68)

(5.69)

(5.70)

= exp(—Ic[1] + Dyjp—1[h (1 = pp + pp exp(—Ip[1])) — 1]) £ Fi[h]

while

1+ Dyje—1[h exp(=Ip[1]) pp by] ifw={y} A
Dilh exp(—Ip[1])pp 6] if w| > 1

dwlh,0] = {

(5.71)
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Hence, the numerator is

Doy =R Y ] dwlh] (5.73)

9=0 PBy weP

On the other hand, the denominator of the corrected PGFL is

aFk h7 g
% LR ] dw (5.74)
9¥  Ih=19=0 PByweP
where
Dyj—1[exp(—Ip[1]) pp Lu] if lw| >1
In conclusion, the corrected PGFL is
- 2pEy Lwep dwlh]
Grilh] 2 Filn) S22 (5.76)
| ZP/EIy Hw'e’P' A
where
- A Fk[h o o o
Fy[h] = Foll] = exp(Dyp—1[(h — 1) (1 = pp + pp exp(—Ip[1]))]). (5.77)

O

5.4.4 APB-PHD corrector

Theorem 10. The APB-PHD corrector, which corresponds to the APB
measurement model, is given by

Dyj(x) = A(x) Dyjp—1() (5.78)
where the likelihood A(:) is defined as follows

A() £ (1~ () + o) exp(~To[tla]) + Alyle)  (5.79)
and
Alyle) £ o) exp(~Io(1la]) 3 wp (Z ‘Z“;}x)) (5.80)
PBy wer W
with
-y HWEP dW

wp (581)
ZP’EIy HW/GP’ A
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Proor

According to the generalized multiobject calculus, the corrected PHD Dy (+)
can be computed as the following functional derivative of the corrected PGFL

Gril]

0 Grji[h]

(5.82)

h=1

thus the objective is to compute the following differentation

Dypu(a) = 5{8} Ei[h ]gzeg}ly%v;:jwd[j"l]]h )
by le/epl duy 8‘([996} 1;lng’d Jh=1
ool &3] %F’“WVE»W-
Zpgyﬂlwep' ,Za{m} ngd dh=1

7 1 9 Fy[h)
= S Ty d 2 | 0y LL &I+ FilE 3oy TL ol

W pBEy weP weP
£Ap[h] £Bp(h] h=1
(5.83)
In order to simplify the notations, define the functional
i[h] £ Dyj—1[(h = 1)(1 = pp + pp exp(—Ip[1]))] (5.84)

so that F[h] = exp(i[h]) and, after some standard computations,

9 Felh] _ dexp(ilh)
0{z} o{z} (5.85)

= Fi[h](1 = pp(x) + pp(z) exp(—Ip[l]z])) Dyjp—1(x)
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Consequently, the first term takes the form

Ap[h] = Fy[h](1 = pp(x) + pp(z) exp(—Ip[1]2])) Dep—1(z) ] dul
wePpP
= Fi[h](1 = pp(z) + pp () exp(~Ip[L|z])) ] dwlh] Dyjr-r (@)

wePpP
(5.86)

Now, for the second term, it holds that

_0_ _ ]
8{x}wlg)dw[h] IT dwin (Z Al 8{3:}) (5.87)

w/eP cP

and
ad, ]
8d{x[?] iz }[Dklk 17 exp(—Ip[1]) pp bu]]

= exp(—Ip[l]x]) pp(z) bw(z) Dyj—1(z)

(5.88)

meaning that

a{i} [T dultl = T o (Z L Ol (@) b <x>Dk.|k_1<x>)
weP

w/eP weP

= pp(x) exp(—Ip[l|z]) H du < d ) klk—1()
weP

w/eP
(5.89)
Consequently the second term gets the form

Bp[h] = Fy[hlpp(x) exp(—Ip[1]x]) H dw <Z ZW([:;CLD Dyjp—1(z)

w/eP

Hence, it turns out that

Dyi(z) =

! 3 [Ap [h] + Bp [h]}

>pray wep: dw P8y h=1

! Z Fy.[h) ((1 — pp(z) + pp(z) exp(—Ip[l|z])) H du|

ZP/E'Y HW/EP/ hu PBy weP

pp(x) exp(—Ip[l|x]) H dy ( 2’:}{2) )] Dyjj—1(x)
wePpP h=1

w/eP
(5.91)
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Now, by observing that d,[1] = dy and F}[1] = 1, the claimed formula for
the corrected PHD follows

1 . .
Dyjp(z) = Z’)D/Ey T PXEI: [(1 — pp(z) + pp(z) exp(—Ip[1]z])) ng)dw—&—
po(x) exp(—Ip[l]z]) H A (Z gm;l(x)> 1 Dyjj—1 ()
wEeP wep W

Z'PEy HWGP A +
EP’Ely HW’EP’ dW/
=1

(o) exp(-lle]) 3o g (Z K”;(x)ﬂDm(w)
y weP W

PBy W 'ep’

- la — () + pp(z) exp(—Ip[l]z]))

Ay
=wp

= [(1 — pp(x) + pp(z) exp(—Ip[l|z]))

+]3D(-/E) eXp(—ID[1|xD pr <Z év&ff)) ‘| Dk:\kfl(x)

PHy weP
£A(>y|e)
= [(1 — pp(x) + pp(x) exp(—Ip[l|z])) + A(yl‘)] Dyje—1(z)
2A(z)
(5.92)
O

5.5 Gaussian mixture implementation
5.5.1 GM-APB-PHD corrector
Theorem 11. Consider the following assumptions:

e the predicted PHD is a Gaussian mixture of the following form

Vik|k—1

Diji—1( Z wk:\lc N (w; ‘r;c|k717pli|k71) (5.93)
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e the detection intensity Ip[-|z] is Gaussian, in the sense that
In(ylz) £ Ap(x) b (ylz) (5.94)

where the spatial distribution ¢, (-|z) £ Ip(y|z)/Ip[1|z], assuming that
the single-point measurement model is linear-Gaussian, ie. Y =
Cr Xi + Vi with Vi ~ N(0,Ry) , is the following Gaussian single-
point-object likelihood

U (ylw) = N (y; Cr w, Ry) (5.95)

e the detection probability pp(-) satisfies for all ¢ and for all € R™ the
relationship

pp (@) N (; xi\kw Pli|k71) = ﬁD(x;cwq)N(x? xi\k717 Pli|k71)

e (5.96)
= ppN(z; Thlk—1s Pk\k-—l)
where pf, £ pp (¢, _,)-

e the detection intensity Ap(xz) 2 Ip[l|z] satisfies for all i and for all
x € R” the relationship

exp (—Ap(2)) N(@"éx;ﬁk—upii\k—ﬂ = exp (_)‘D(x;ﬂk—l)> N (; x;dk—lv Pli|k—1)
£ exp (_)\%3) N(m§x§c|k71a P]i\kq)

(5.97)
where A\ £ )‘D<x§c|k71)~
Then, the corrected PHD is a Gaussian mixture of the form
Dyy(z) = DRR (@) + > Y DRy(a:; P,w) (5.98)
PHBy weP
where:
e 1) the undetected object PHD DkN|]I?() is
Vk|k—1
DRR@) 2 " wiy N (w5 P (5.99)
i=1

where for all predicted Gaussian components ¢, defined

Pegr = b exp(=Ap) (5.100)
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the undetected object weights are given by

Wiy = (1= Pegr) Whie—1 (5.101)
while the parameters of the nondetection Gaussian components are
given by

xim £ $Z|k—1
oA (5.102)
Pk|k = Pk|k—1
¢ 2) the detected object PHD D,?lk(~; - ¢) is
Vk|k—1 . ) )
DRy (i Pow) 2 3 wih (x;x;*lv,g,P,;ig) (5.103)
i=1

where for all predicted Gaussian component 4, P, w, defined (the sym-
bol @ denotes the vertical stacking operation)

y‘”é@y Cw2[Ch,...,C]" Ry =diag(Ry,...,Ry)
——— —_—— .

yew |w| times |w| times
(5.104)
The detected object weights are given by
i, P,w ]5; wp K\ZN 3
wk|7l: & <Hd) Wi|k—1 (5.105)
with
i [w L oATW 7,W
fi N (AD) N (ywayk‘k_lvsk )
w IW
Vk\kc71 (5106)
d — 5 + = Z o ()\L )\W| N( L oALW SL7W) ’LUL
W Wb e Pet \AD Yws Uplk—1> 9k ) Whjk—1
=1
and QZ""}'CA, S,i’w given by the following Kalman predictor
Si,W éRW-i-pri B C\:\,
’ Kk (5.107)

AT, W

a i
Yelk—1 = Cw Ty —1

while the parameters of the detection Gaussian components are given
by the following Kalman corrector

. . . -1
Ly, & Pl Gy (Sk’ )
Pi & (I = L, Cu) Pl (5.108)

AT LW

iw s i i _
Tie = Trp—1 T+ Ly (yw yk\kq)
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Proor

The corrected PHD is

Dyji(x) = A(x) Dyjp—1(2)
= (1= pp(@) + pp (@) exp(—Ip[1]z])) Dyjp—1(x) + Aly|2) Dyjg—i (2)
£ DND () éDlek(:J(:)

klk
(5.109)
so the objective is to show that the undetected object PHD D,Ijlg() is given

by (1.99) and that the detected object PHD DkD|k(') =2p 2w Dii (5P w)
where DE\k(';PVW) is given by (1.103).

Undetected object PHD

Recalling the Gaussian form of the predicted PHD and by defining Ap(-) £
Ip[l]], it follows that

Vi|k—1
DRR() = 37 (1= (@) + (@) exp (“An(@)) ) Wiy N (551, Pjeos )
i=1
(5.110)
Now, thanks to the previous assumptions,
Vi|k—1
DIR@) 2 Y (1= + b exp (<Ab) ) whey N (w5 ks Pl
i=1
Vk|k—1
== Z wzzcch (xeZugvazw)
i=1
(5.111)
where for all ¢
w;ﬂk £(1 _ﬁéff) w2|k—1
Pl £ Pl ) (5.112)

N
Liik = Tklk—1

Detected object PHD
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From the Gaussian form of the predicted PHD. it holds that

Dllc)lk(l') = pp(z)exp (— Zw <Z W))

PBy wePpP

Vk|k—1

X ( Z w2|k1N(fU§$Z|k1?Pﬁ|k1)>

i=1
oy bu(z) i i

= Z Z Z P (z) exp (=Ap () wp =Wy N(5 Ty 1, Prjp—i)

PByweP i=1

éDkD‘k(af;’P,w)
(5.113)
so the objective is to show that equivalence D,?lk('; -,+) is given by (1.103).
Due to the previous assumptions,

Vik|k—1
o i bu(z) i i
Dlak(x;P’W) 2 Z Pp €xp (—/\D) WPkawc—l N(x§xk\k—lvpk\k—1)

Vi|k—1 o;

o Péfpré i Lo i
= Z wk|k71 N(xvxmk:fppk\kq)

(5.114)
now focus on the cell likelihood ¢,,(+). It holds that
In(y|w Ap ()™ N (4 Cu, R
= [To@ =11 ?(?)) - Colz) 153’ ) sa)
yeEW YyEW cly C
where are defined
w2y Cu2[Ch,....CL) Ry 2 diag(Ry,. .., Ry)
yew — —— (5.116)
|w| times |w| times
Consequently,
b " itewr 0D -
Dii(iPow) = > e S w1 N (i Gt Ba) N (3 i1, Py 1)
i=1 w ¢
(5.117)

Now, for the foundamental Gaussian identity, it holds that

N(yw§ waaRW)N(x;x;dk—l’Pli|k—1) = N(ywvﬁlkr;; 1vSZW)N($ xk‘k,Pg“”:)
(5.118)
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where g;"“,vc_l, Sp™ are given by the following Kalman predictor

S 2 B+ CPY G

AT, W

A i
Ule—1 = Cw Ty

while xz‘v};, P,Zl}’: are given by the following Kalman corrector

Ly = Py, Gy, (Sli’w)_l
Piiy 2 (I = Ly, Cu) Py
lev]\; 2 2y + Ly, (yw - ﬂ;i’r;i,l)
Hence, it turns out that

Vi|lk—1

D . A peﬂ“w'Pgw 7 A i ,W
Digjp. (P, w) = E a4 wk\k—lN(I’ka’Pk\k)
i=1 w
Vik|k—1

1>

i, P,w A 7, W
Z Wk N(m’ka’Pk\k)

i=1
where

i\ wl A i,W o .
(A}D) N(yW7 yk\k—l’ Slc ) iWPw A péﬁ wp g\zN )
Ivcv klk dy,

i A
0, =

(5.119)

(5.120)

(5.121)

(5.122)

Finally, the last step is show the explicit expression of d,,. In order to do

that, recall the definition of d,, and apply the assumptions, so that

d. = 1+ Dk|k71[ﬁeﬂ“€y] ifw= {y}
" Dyj—1[Pet fw] if jw| > 1

. Ap ()™ A w; Cw T, Ry
o+ [ e 02V X )
C
Vg|k—1
X (Z ka—1N(x§xZ|k—1,Piik—1)> dz
=1

Vi|k—1

= i+ 7 2 B Q)™ N (i B S1™) ke
C =1

= 5\W\,1 + Dk\k—l [ﬁeﬁ'gw]

(5.123)
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5.5.2 Partitioning methods

Both the theorical corrector and its Gaussian mixture implementation are
computationally intractable because they involve the computation of evry
possible partition of the actual set of measure y gathered by the sensors.
However, suppose that the extended objects present in the scene are well
separated and that the measurements generated by every object are not
mixed togheter but are tightly clustered around the corrisponding object. In
this case exist one and only one natural partition P* that haves a dominant
weight with respect the others Bj,| — 1 possible partitions.

In a more complicated situation where there is not a natural partition
of the set of measures, multiple partitions can have large weights. In some
sense, the number of relevant partitions grows with the entropy contained in
the set of measures y.

The computational cost of the PHD corrector can be reduced to a tractable
level by reducing drastically the number of partition considered. The idea is
the following: instead to consider every possible partitions in the complete
set P By, consider only a small subset Sp(y) C P Hy composed by only
P(y) £ |Sp(y)| < By, = [P By| good partitions, where good means that
hopefully every partition considered have large weight. The PHD corrector,
then, can be approximated as follows

Dyi(x) = DR (x)+ > > Diyla;P,w). (5.124)
PeSp(y) weP

There are several ways to define the set of relevant partitions Sp(y), for
example common partitioning methods used in MOT are the following:

e distance partitioning;

e GLO partitioning;

5.5.3 Distance partitioning

The idea of this method is to collect in a same cell measures that are near
from each other. This a idea seems reasonable if it is true that the extended
objects produce their measures in the neighborhood of their centroids.

In order to understand how works distance partitioning, consider the
following example.

¢ example - Consider the following set of measures (2-dimensional po-
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sitions expressed in meters)

r={e v e [ 2 [ o2 [ o2 [ w2 [ n 2 [7])
(5.125)

and consider the conventional Euclidean distance A; ; = \/ (vi — ;)" (yi —vj),
so the distance matrix A £ [A, ;] is

1.4 3.6 92 98 106 11.4]

3.6 92 10 108 11.6
5.6 64 72 8.1

A~ 1 2 3 (5.126)
12
1

in this case the measurements y, y2 are near from each other (Ag 2 ~
1.4 is small) and the measurements y4, y5, ¥s, y7 are near from each
other (Ay5 = Asg = Agr = 1 are 7small”), so there is a natural
partition

P ={{yi,v2}, {vs}, {va, v5, 6, y7}} (5.127)

Distance partitioning defines two measures as near if for a given tresh-
old « (which is a parameter of the algorithm) holds

and, based on this definition, choose the (unique, as one can show)
partition that satisfies the following property: if A; ; < v (= y; and
y; are near) then y; and y; are in the same cell. Note that, on the
contrary, distance partitioning doesn’t guarantee that if y; and y; are
in the same cell then A; ; <.

As a consequence of this defining property, if v £ 0 then every measures
are considered isolated and the partition generated is the maximal
partition, which is in this example

P ={yi} {vet {ys} {vad {ys } {ye ) {yr}} (5.129)

if v £ 0o then every measures are considered near and the partition
generated is the "minimal partition”, which is in this example

P = {{y1,Y2, Y3, Y4, Y5, Yo, Y7} } (5.130)

the specific partition is produced, for example, by the treshold v £ 1.5.
Distance partitioning consider the following procedure to generate the
partition.
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— step 1: defines w; = {y;} and searches the neighbohrs of y;.
If y1 has not any neighbors then the partition wy is completed,
otherwise includes in w; such neighborhs.

In this example there is one neighbohr for y;, that is ys, so wy =
{y1} is augmented to wi = {y1,y2}.

— step 2: if wy is not completed, repeat the operations of step 1 on

the new measurement just included.
In this example (only) the measurement yo was just added to w
so, firstly the set of neighborhs of ys is searched. Excluding y1,
the measure y, has not any neighbohrs so w; is declared complete,
SO

wi 2 {y1,y2} (5.131)

— step 3: the first measure that is not in wy is considered to ini-
tialize the new cell wy. In this example such measure is y3, so
wo £ {y3}. Then, step 1 and step 2 are applied to the new cell.
In this example y3 has not any neighbors, so the relative cell is
declared complete

wo = {y3} (5.132)

— step 4: the first measurement that is not in wy or ws is considered
to initialize the new cell wz. In this example such measurement
is 44, so wz £ {y4}. Then, by repeating step 1 and step 2 on ws
turns out for this example:

* 14 has one neighbor that is y5. The cell is augmented to
w3 = {ys,y5}.

* the new measurement ys has a new neighbor that is ys. The
cell is augmented to ws = {y4, ys, Ys }-

* the new measurement yg has a new neighbor that is y7. The
cell is augmented to ws = {y4,ys, ¥s, Y7 }-

* the new measurement y7 has not any new neighbors, so ws is
declared complete.

W3 = {y4, Ys, Ye, 97} (5~133)

— step 5: the first measurement that is not in wi, wsy or wg is
considered to initialized the new cell wy. In this example wq,
wy and ws exhaust the set of measurements y, so the partition
composed by such cells is declared complete, thus it is returned

P = {Wl,WQ,Wg} (5134)

which is the considered partition.
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Note that the defining property is satisfied: the couples of near mea-
surements are

— A1 =14 <y £ 1.5. The measures y; and y» are in the same
cell wy;

- Ays=1<7y £ 1.5. The measures y4 and y5 are in the same cell
w3;

- Asg=1<7n £ 1.5. The measures y5 and yg are in the same cell
W33

- Agr=1<7y £ 1.5. The measures yg and y; are in the same cell
W3

On the other hand, if two measurements are in the same cell then in
general is not true that are near. For example, consider y, and y7, they
belong to the same cell w3 but their distance is Ay 7 =3 >« £1.5,s0
they are not near.

5.5.4 GLO partitioning

In general, to achieve good tracking performance it is necessary to consider
a partition that resembles accurately the true partition generated by the
objects in the scene. Considering only one partition between the By possible
partitions is not a good idea because it is unlikely that such partition is
similar to the true one. In order to increase the chance to have included a
good partition in the estimation problem, a set of partition Sp(y) containing
P > 1 different partitions is required.

The GLO (Granstrom Lundquist Orguner - name of the authors) parti-
tioning generates multiple partitions with the following procedure:

o step 1: Given the set of measurements y, every () = |y| - (y —
1)/2 possible distances A; jare computed by considering the (unitless)
Mahalanobis distance

Aiy 23w — ) BV — ) (5.135)

e step 2: Since y is Gaussian and the distance considered is Maha-
lanobis, the variable A; ; is a x? with p = dim(y) degrees of freedom.
The following confidence interval (based on the inverse CDF of the X127
distribution) is thus computed

5min(]- - O[) < Ai,j < (smax(]- - 04) (5136)

where the significance level « is defined by 1 — o = P(0pin(1 — @) <
A; j < 0min(1 — @)) and typically is chosen in [0,0.4].
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e step 3: is defined the set of thresholds as follows
I £ {Ai,j : 5min(]~ — Oé) < Ai,j < 5max(]- — Oé)} U {0} (5137)
where only the distances A; ; with statistical relevance are considered.

e step 4: For every treshold v € T, distance partitioning is performed.
Consequently, in this step |['| partitions are generated.

e step 5: It is possible that distance partitioning produces the same
partition when different tresholds are considered. In this final step,
the set of partition Sp(y) is defined by considering only the different
partitions generated in step 4.
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Shape filters
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Chapter 6

Fundamentals of random
matrices

6.1 Summary

In this chapter are discussed the main mathematical tools, the Wishart and
inverse Wishart distributions, used by the GIW, MEM-EKF* and LO-MEM
filters to deal with the estimation of the shape of an extended object. Since
theese two distributions are matrix-variate, new concepts such random ma-
trices, matrix-variate PDF's are briefly introduced in the first part of the
chapter. In the final part of the chapter are discussed the definitions and
applications of the Wishart and inverse Wishart distributions.

6.2 Matrix vectorization

6.2.1 Full vectorization

Let A be a generic matrix in R™*". Let Ay, ..., A, be the column of A
A=] A || Ay ] (6.1)

the vectorization of A is an operation that maps the matrix A into a column

vector vec[A] € R™™ obtained by stacking vertically the columns A4, ...,

A, of A

vec[A}é@Ai:[A’l oA (6.2)

113
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Note that given the vectorization vec[A] it is possible to recover the
orginal matrix A by partitioning vec[A] in n consecutive column m x 1 sub-
vectors A, ..., A, and by organizing them in a m X n matrix, which is
A itself. This means that vec[A] provides an equivalent way to express the
information encoded by matrix A. Thanks to the vectorial representation,
familiar vectorial concepts, like the core concepts of the vectorial differential
calculus or the concepts of the random vectors theory, can be easily extend
to the space of matrices.

6.2.2 Half vectorization

Let A be a symmetric matrix in R™*™ ie. A;; = A;; foralli,j=1,...,m.
In this case the matrix A can be expressed as a ”compressed” vectorization
since there are not m? distinct elements but only m(m + 1)/2, which are
the diagonal elements {A;;}1<i<m and (by convention) the super-diagonal
elements {A;;}i1<j<i<m (rather than the sub-diagonal elements).
Exploiting this fact, define the half vectorization of A = A’ € R™*™ ag
the operation that maps A into the column vector vech[A] € R™5 given
by
VeCh[A] £ [An A12 A22 Alm Amm]/ (63)

for example, if m £ 4 then

vech[A]é [An Ap Asx A31 A32 A33 Ap Agp A43 A44]/
(6.4)

6.3 Kronecker product

The Kronecker product between a matrix A € R™*™ and a matrix B € RP*4
is the matrix A ® B € RP"™*9" defined as follows

ApnB -+ ALB
A@B=|
ApB - AnnB
often the Kronecker product permits to express complicated expressions in
simple and compact form. For example, consider a 2 x 2 sample covariance

matrix obtained from a sample of m measures y,,...,¥y,, characterized by
— A —
the mean measure y =m~' > 7"y,

S22 Sy, —g)(y,— 9 (6.5)

m — 1 4
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if, for some reason, the vectorial representation vg = vech[S] is preferred to
the matricial representation S, then one can express in vectorial form the
sample covariance only trough algebraic operations

vs= 0 Sl - 9) @ v - ) (6:5)

where

0 0
0 0 (6.7)
0 1

6.4 Some useful properties

The vectorization and the Kronecker product give rise to some useful prop-
erties that are widely used in multivariate statistic. A brief list of such
properties is the following:

o veclaA + bB] = avec|A] + bvec[B] (linearity);
o vec[AB] = (I ® A)vec[B] = (B’ ® I)vec[A] = (B’ ® A)vec|I];

e vec[ABC] = (C' ® A)vec|B];

e vec[vv'] = v ® v (with v column vector);

o tr[A’B] = vec[A]'vec|B];

o tr[ABC] = vec[A') (I ® C)vec|C);

o t1[D'ABC"] = vec[D]'(C ® A)vec|B];

o t1[AB'CBD] = vec[B]'(DA ® C")vec[B] = vec[B]'(A'D’ ® C)vec|B];

e tr[AB'CB] = vec|B]'(A ® C")vec[B] = vec|B]' (A’ ® C)vec[B];

6.5 Matrix integral

6.5.1 Full integration

Let f: R™ ™ i R be a scalar function of the generic m x n matrix X. The
integral of f(-) over a region R C R™*"™ is defined as the iterated integral
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of f(-) with respect each element of vec[X], where such elements X;; range
according vec[R)

/ f(X)dx & f(vec[X]) dvec[X]

R vec[R] (68)

=/ FXan, e Xon) dXy - dX o
vec[R]

in short, the measure considered on the space R™*™ of m x n real-valued

matrices is the Lebesgue measure of the m - n-dimensional Euclidean space
R’I’)’L'ﬂ,

m

dX £ dvec[X Aﬁ]‘[ Xij (6.9)

i=1

essentially, the matrix integral is a conventional multiple integral in a ”high
dimensional” Euclidean space.

6.5.2 Half integration

Let f: R™*™ — R be a scalar function of a symmetric m x m matrix X.
The integral of f(-) over a region R C R™*™ ig defined as the the iterated
integral of f(-) with respect each element vech[X], where such elements X;;
range according vech[R]

/ f(X)dx & f(vech[X]) dvech[X]
R vech[R)]

:/ F(X11, X2, Xoo, -, Ximy - Xonm) (6.10)
vech[R)]

x dX11dXi2dXoe - d Xy, - dXmm

in short, the measure considered on the space R™*™ of symmetric m x m

real-valued matrices is the Lebesgue measure of the m-(m+1)/2-dimensional
Euclidean space RS

dX 2 dvech[X H (6.11)

\/\ms

6.6 Random matrices

Roughly speaking, an m xn random matrix X is a matrix whose m-n entries
X ;; are random variables. More formally, an m x n random matrix X is
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a measurable map X : (Q,&,P) — R™*" where (2,&,P) is a probability
space. According to this fact, the basic concepts related to random matrices
are direct generalizations of the basic concepts of the random variables. In
what follows, such concepts, i.e. the definition of PDF and the definitions of
the most common moment of a random matrix, are briefly discussed.

6.6.1 Generic random matrices

definition 1: Let p : R™*™ — R be a scalar function of the generic
m xn matrix X. The function p(-) is a matriz-variate PDF if and only
if

1. p(X) >0 for all X € R™*™;

2. [p(X)dX £ [ p(vec[X])) dvec[X] = 1.
definition 2: Let h : R™*" —» RP*? be a matrix function and let X

be a generic random m x n matrix with PDF p(-). The expected value
of h(-), whos typical element is denotes as h;;, is defined as

Eh11(X)] - E[hy(X)]
Eh(X)] = : : (6.12)

Elhp (X)) -+ Elhp(X)]
where for all i =1,...,pand forall j =1,...,¢q
Blhiy (X)) 2 [ hiy(X)p() X 2 [ by (X) plveclX]) dveelX]
(6.13)
definition 3: The expected value of the m x n random matrix X,

whos typical element is X;;, with PDF p(-) is the expected value of
the identical function A(X) = X, i.e.

E[X11] - E[X1,]
EX]2 | s (6.14)
E[Xm1] -+ E[Xpmnl
where for alli=1,...,mand forall j=1,...,n



118 Fundamentals of random matrices

e definition 4: The variance of the m x n random matrix X is the
expected value of the function h(X) = (X — E[X])(X — E[X])/, i.e.

Var[X] 2 E[(X — E[X])(X — E[X])] (6.16)

as one can show, the expectation operator (66) satisfies the familiar linear
properties of the usual expectation operator:

e if A is a deterministic matrix then E[A] = A;

e if A, B are deterministic matrices with suitables dimensions, then
E[Ah(X)B] = AE[h(X)]B;

e if hy(-) and ho(-) are matrix functions of the same order then E[h; (X )+
ho(X)] = E[h1(X)] + E[h2(X)]

from the previous properties of the expectation operator follows immediately
the simplified formula for the variance

Var[X] = E[ X X'] — E[X|E[X]’ (6.17)

More commonly than the variance, the dispersion of a random matrix
is quantified by the covariance. The extension to the matrix-variate case
of the covariance definition is less straightforwad then the previous defini-
tions and involves the vec[-] operator. Since there is a bijection between X
and vec[X], the statistical properties of the random matrix X € R™*" are
completely represented by the statistical properties of the random column
vector vec[ X ] € R™™. This means that the distribution of a random matrix
X is simply the distribution of the random vector vec[X]. Naturally, one
can think also in terms of the columns of X, which are the columns of X',
thus the same reasoning holds for the random column vector vec[X'] € R™™.
According to this fact, from the definition of matrix-variate PDF and matrix
integral follows the relation

p(X) = p(vecX]) = p(vec[X']) = p(X11,- -« Xpn)  (6.18)

which says that there are four equivalent ways to express the PDF of a
random matrix:

1. (the most explicit) p(Xi1,- -, Xinn), where every single random vari-
able X;; is denoted separately in the joint density p(-);

2. p(vec[X]) = p(X1,---,X,), where the random variables X;; are orga-
nized and denoted in the joint density p(-) in n random m-dimensional
column vectors, which are the columns of X;
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3. p(vec[X']) = p(X1,--- , X,,), where the random variables X;; are orga-
nized and denoted in the joint density p(-) in m random n-dimensional
column vectors, which are the transpose rows of X;

4. (the most coincise) p(X), where the random variables X;; are globally
organized and denoted in the joint density p(-) in 1 random matrix.

As a consequence, one can define the density of a random matrix by using
three different representations and then switch from one to another without
loosing any information. Thus, now consider the vectorial representation
given by p(vec[X’]) instead of the global representation given by p(X). Since
vec[X'] is a random vector, it is well-defined its covariance.

e definition 5: The covariance of a random matrix X is the covariance
of the the random vector vec[X'], i.e.

Cov[X] £ Covlvec[X]]

A / / / 11977 (6‘19)
£ E[(vec[X'] — E[vec[X]])(vec[X '] — E[vec[X]])']

e definition 6: The cross-covariance between the random matrices X,
Y is the cross-covariance between the random vectors vec[X'], vec[Y],
ie.

Cov[X,Y] £ Covl[vec[X'],vec[Y"]]

A I l l ny’ (6‘20)
£ E[(vec[X'] — E[vec[X']])(vec[Y'] — E[vec[Y"]])]

Abbreviate vx £ vec[X'], 1x = E[vec[X']], then the covariance of X can
be expressed more clearly as

COV[X] = COV[vx] = E[('UX — @X)('UX — ’UX)/] (621)

moreover, due to the usual elementary properties, holds the simplified for-
mula
Cov[X] = E[uxv'x] — ox0x (6.22)

and in the same way,
Cov[X,Y] = Cov[vx,vy] = E[(vx — vx)(vy — vy)']

6.23
:E[’()ley] —ﬁxﬁ;/ ( )

6.6.2 Symmetric random matrices

For the symmetric case one has to define the concepts of PDF and moments
in terms of half integration rather than full integration. Thus, in every
occurrance, the vec[-] is replaced with the vech[-] operator.
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6.7 Wishart distribution

6.7.1 Definition

Definition 7. Let yq, ..., y,, be independent N (0,Y) random vectors in
RP. If ¥ > 0 and m > p — 1, then the symmetric random matrix A, called
scatter matriz, defined as

ALY iy, (6.24)
i=1
is said to have the p-dimensional Wishart distribution with m degrees of

freedom and scale matrix ¥. It will be used the notation A ~ W,(m, )

The Wishart distribution gets a familiar form if the attention is restricted
to the simpler case where:

e the sample is univariate, i.e. p=1or yy, ..., Y, (with m > 1) are
independent scalar random variables;
e the underlying distribution of the sample is a standard Gaussian, i.e.

y, ~N(0,1) i=1,2,...,m

then the Wishart distribution reduces to the familiar chi-squared distribution
(with m degrees of freedom)

A~ Wl(m7 1) = X72n
The Wishart distribution can be though as a multidimensional chi squared
distribution and, likewise the x?2, distribution is used to estimate the vari-

ance of a Gaussian univariate sample, the W, (m, X) distribution is used to
estimate the covariance matrix of a Gaussian p-variate sample.

6.7.2 Density and moments

If A~W,(m,X) then the matrix-variate PDF of A is

m—

L (det A)“F etr (—18714) i A=A">0

(6.25)
0 otherwise

pa(A;p,m, %) = {
where etr(-) is the exponential trace operat01E| and the normalizer K is given
by

p .

p plp— 1— m

K & gmi 2ol HF (m+zl> (det X0) 2 (6.26)
i=1

Lif M is a square matrix, then etr(M) £ exp (tr[M]), where tr[-] is the trace operator
(sum of the diagonal elements of M)
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with T'(:) be the Euler’s Gamma functiorﬂ ie.

I(z) 2 /R e exp(—t) de (6.27)

According to the PDF (?77), the expected value and the covariance of A are
given by

E[A] =mX .95
Cov]vec[A]] = m([,2 + K,,) (2 ®@ X) (6.28)

where I,,2 is the p? x p? identity matrix and K, called commutation matm’zﬂ
is defined as

p
K, Y (Hij; H)) (6.29)
ij=1

with H;; € {0,1}P*? be a matrix having a unit in position ij and zero
elsewhere. For example, if p = 2 then

Hn:{l o] Hm:{o 1} Hm:[o 0} H22=[° 0] (6.30)

0 0 0 0 1 0 0 1
and
1 0 0 O
0 01 0
Ky = 010 0 (6.31)
0 0 0 1

Note that the covariance of A is expressed in a redundant form due to the
use of the vec[-] operator.

6.7.3 Application

The most important application of the Wishart distribution is expressed by
the following famous result.

Theorem 12. (Wishart, 1920 circa) Let {y,}", be a sample of m > p
IID p-variate Gaussian vectors with expectation p, € RP and non-singular
covariance X, € RP*P

Y, ~ N (1,8, i=1,2,...,m

then

2the Gamma function is the extension of the factorial function n ~— n! to non-integers
3the name arise from the properties vec[M'] = Kpvec[M], vec[M] = Kpvec[M’], where
M is a generic p X p matrix
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1. the sample mean y € R? is Gaussian with expectation y, and covari-

ance 3, /m
1 & D
N
= — E Ny, =2
y miZIyz (Iu’y m

2. the centered scatter matrix A € RP*? is a p-variate Wishart with m—1
degrees of freedom and covariance matrix X,

ALY ()Y 5 ~ Wy~ 1.5)

3. the sample mean ¢y and the scatter matrix A are independently dis-
tributed

due to this fact, turns out that gy, A are sufficient statistics to infer the
value of ;1, and ¥, indeed due to the facts

Ely] =y
E[A] = (m —1)%,

follows that, given y = 3y, A = A, one can reasonably estimates for the
parameters u,, %, of the sample population as

(6.32)

Hy =

% A (6.33)

m—1

I
»n <

Y

the random matrix § £ A/(m — 1) is nothing but more than the sample
covariance matrix, and it turns out that it is Wishart as well

"m—1

S~W, <m i, ) (6.34)

this result plays a central role in the LO-MEM corrector.

6.8 Inverse Wishart distribution

6.8.1 Definition and expectation

Definition 8. A p x p random matrix B is said to have the p-dimensional
inverse Wishart distribution with v degrees of freedom and parameter matrix
V if and only if v > 2p and its density function is

L(det By % etr (-1B7V) if B=B >0

) (6.35)
0 otherwise

pB(vavl/vV) = {
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where the normalizer K is given by
A apr=p=1 p(p—1) u vV—p—1i _v=p-1
K=2P 72 g 1 HF (2> (detV) 2 (6.36)
i=1

It will be used the notation B ~ ZW,(v, V).

The inverse Wishart distribution is the distribution of the inverse of a
Wishart random matrix, indeed hold the following facts:

o if A~ W,(m,%) then B2 A" ~IW,(vEm+p+1,V 251,
o if B~oIW,(v,V)then A2 B ' W,(m2v—p—-1,2 2V

If v —2p — 2 > 0, the expected value of an inverse Wishart matrix B ~
IW,(v,V) is
1% y1

v—2p—2 m-—p-—1

(6.37)

6.8.2 Application

The central property of the inverse Wishart distribution is that it is the
conjugate prior of the Wishart distribution: let ¥ = ¥’ > 0 be a unknown
p X p matrix and A = A’ > 0 be the observation of a random matrix A, by
considering the prior model

X~ IW,(v, V) (6.38)
and by considering the likelihood
Al ~W,(m, %) (6.39)
follows that, given A = A, the posterior distribution of X is
SA~IW,(v+m,V + A) (6.40)

This important result is the core concept of the GIW filter. Such filter
represents the shape of an extended object with a d x d (with d = 2 if the
object moves on a plane or with d = 3 if the object moves in the space)
symmetric and positive definite (SPD) random matrix X = X’ > 0 and, in
order to produce a Bayesian estimate of X, assumes that X ~ ZWy(v, V).
Then consider as a measure the centered scatter matrix Y generated by
a sample {y; € R4}" | assumed to be Gaussian, so Y ~ Wy(n — 1,%,).
Thanks to these positions, it turns out that the corrected density of X is
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IWy(v+n—1,V+Y), so the Bayesian estimate X produced by GIW filter
is —
(V+Y)!

wv4+n—-1)—2d—2
Notice that this is only the underlying idea of the GIW filter and some
important aspects of the estimation process are neglected. For this reason,
the above estimate does not represent the exact estimate produced by the
GIW filter but only an approximation.

X =E[X|Y] = (6.41)



Chapter 7

GIW filter

7.1 Summary

This chapter provides the derivation of the first filter, the GIW filter, that is
able to estimate both the position and the shape of a single extended object.
In the first part of the chapter are discussed the main ideas involved to
represent and estimate the jointly the position and the shape of the tracked
object, then GIW predictor and corrector are derived in details. The chapter
ends with the implementation of the GIW filter with the PHD filter for
extended object, which results in the GIW-PHD filter, which is able to track
simultaneously the positions and the shapes of multiple extended objects.

7.2 Elements of the Bayesian solution

A single extended object is modelled by two random variables:

¢ kinematic state: is a random vector x; modelling the position, ve-
locity, acceleration, etc, of the object. For example, in a 2-dimensional
scenario, a possible choice of x is the following

z, 2 [m) m) ;] e R*® =RO (7.1)

where:

— my, = [€, 1) € R? is the position of the object expressed in
cartesian coordinates;

— 1y, 2 [, 7] € R? is the velocity of the object expressed in
cartesian coordinates;

125
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— 7y, 2 [€, 7] € R? is the acceleration of the object expressed in
cartesian coordinates.

naturally, one can generalize the expression of the kinematic state by
considering a d-dimensional scenario (in a cartesian framework, the
most common choices are d £ 2, d £ 3) and by including in the model
the first s — 1 derivatives of the position my, i.e.

!/
.’Bké[m;c m, i ... mEj‘”} € R%® (7.2)

in other words, the kinematic state is a column vector x; € R™ with
dimension n = s - d.

e shape state: is a d x d random matrix X modelling the shape of
the object. It is assumed that the matrix X is SPD, likewise a non-
singular covariance matrix, thus the locus of points m € R? satisfying
the quadratic equation

m' Xpm =1 (7.3)

consist in a d-dimensional hyper-ellipsoide representing the contour
of the shape of the tracked object. For example, in the simple 2-
dimensional cartesian case the shape of the object is represented by an
ellipse in R2, while the extension matrix X assumes the simple form

X, = |:X1.1,k X12,k:|

(7.4)
note that the number of extension parameters is not d? but rather
d-(d+1)/2 < d? because the symmetry assumption on X, (the pa-
rameters are only the diagonal components and the upper (or lower)
triangle components of Xy).

Given the representation xj, X of an extended object, the filtering problem
is the following: estimate both x; and X in function of the accumulated
sensor measures yi.x = {y1,...,Yr} according the usual iterative scheme
prescribed by the Bayesian approach. Note that yj is not a proper RFS
because the GIW filter assumes that the cardinality is not random but fixed
to the value ny, i.e.

Yi £ Wik Yne k) ny known (7.5)
The predicted and corrected PDFs considered are the joint conditional PDF's

prjk—1(z, X) £ p(zy, Xglyr1x-1) predicted PDF

Pk (@, X) £ p(@r, Xelyix) corrected PDF (7.6)
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7.2.1 Prediction

Given the corrected PDF py_5_1(-,-) at the previous time step & — 1, the
predicted PDF is given by the Chapman-Kolmogorov equation

P (2, X) = / orthr (@ X |0, W) poapos (0, W) dwd W (7.7)

this formula can be simplified by making the following assumptions:
1. the shape X is statistically independent from the kinematic x;
2. the shape X does not change rapidly in time.

as one can show, with this positions holds

Prjk—1(7, X) ~ (/ -1 (2| X, w) pr—1jp—1(w|X) dw)

Lppp—1 (2| X)

X </ Prlh—1 (X|W) pr_1jp—1 (W) dW) (7.8)

Lppip—1(X)

which says that the predicted density is given by the product of the following
two separate integrations

Prip—1(z|X) £ /‘Pk\k—l(I|X7w)pk—1|k—1(w|X) dw
(7.9)

Prip—1(X) £ /@k\k—l(X|W)Pk—1\k—1(W) dw

therefore the kinematic state and the shape state can be predicted separately.
Note that the kinematic state is conditioned on the shape state in order to
take into account its dependence to the shape state.

7.2.2 Correction

Given the actual predicted PDF pk|k(~7 -), the corrected PDF is given by the
Bayes equation

Cr(ylz, X) prjg—1(z, X)
z,X) = 7.10
Pui (@ X) = 0 ) payes (w, W) dw AW (7.10)
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assuming that yj is composed by nj IID measures distributed according the
conditional density p(y|z, X ), the measurement likelihood gets the following

factorized form
O (ylz, X) <H£k Y|z, X) ) (7.11)

where
Ce(ylz, X) = plyk|or, Xi) (7.12)

is the single-measure likelihood. As mentioned before, in this model the
number of measures ny is not considered random.

7.3 GIW predictor

7.3.1 Kinematic state prediction

The motion model considered for the kinematic state is linear and Gaussian

Ty = (I)k\k—l Tr_1 + wg (7.13)

where, assuming the same dynamic in every dimension ¢ = 1,2,...,d, the
d-dimensional transition state matrix is given by

Ppjp—1 = Frjp—1 ® Ia (7.14)

where Fj, is a 1-dimensional transition state matrix. The term w;, is a white
noise with a zero-mean Gaussian distribution

wi ~ N (0, Agjr—1) (7.15)
with covariance matrix Ay,_; given by
Apje—1 = Drjp—1 © X (7.16)

where Dy ,_1 is the 1-dimensional plant noise. This model states that the
covariance matrix Ay;_1 is proportional to the shape X of the object. The
reason why the actual model is chosen consists in the fact that permits to
compute the easily the prediction and correction steps.

On the other hand this model does not represents accurately the dynamic
of an extended object because it states that bigger (in its extension) is the
object, more irregular is the motion of the object. Clearly, there is no a
physical justification in support to this feature of the model.
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In summary, the linear-Gaussian motion model considered is the following

xp = (Fyjr—1 ® L) Th—1 + wy,

7.17
wy, ~ N (0, Dy @ X) .17

for suitables matrices Fy,_1, Dyjx—1- As a consequence, the kinematic tran-
sition density is Gaussian, more precisel

rlr—1 (x| X, w) = N(x; (Fyjp—1 @ Ig)w, Dyj—1 @ X) (7.18)

Now, by assuming that the corrected PDF for the kinematic state is Gaussian
with the following structure

Pr1je—1 (@] X) £ N (@ 251 )5—1, Po—1jp—1 © X) (7.19)

for given wy,_qx—1, Pr—1)x—1, turns out that the predicted PDF for the kine-
matic state is still Gaussian

Priii (2]X) 2 / Orpr (21X, ) Py (0] X) duw

= N(x; 2k k-1, Prjp—1 ® X)

(7.20)

where the predicted parameters are given by the following Kalman predictor

Tih—1 = (Frp—1 ® Iq) Tp_1j5-1

- / (7.21)
Pyjk—1 = Drji—1 + Frjp—1 Pr—1j—1L5 -1

7.3.2 Shape state prediction

The prediction for the extension state is a simple heuristic, where it is postu-
lated that the shape state is inverse Wishart, which is the typical distribution
used in the multivariate statistic to represent SPD random matrices. More
precisely, it is assumed that the corrected PDF of the shape state is inverse
Wishart with v4_1),_1 degrees of freedom and parameter matrix Xj_q,_1,
SO

Pr—1jk—1(X) & IWa(X; vp1jh—1, Xio—1j—1) (7.22)

while the predicted PDF of the extension state is inverse Wishart with v _1
degrees of freedom and Xj, 1 scale matrix

Propi—1(X) £ IWa (X5 vipe—1, Xkjp—1) (7.23)

Lw that figures in ¢ is not the process noise of the dynamic model, but a generic state
at time k — 1
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the prediction consists only in the time-update of the parameters of the
predicted inverse Wishart, starting from the parameters of the corrected
parameters of the inverse Wishart. The models considered are the following:

£ exp (=T/7) Vk—1jk—1

1—d-—1 7.24
Vk|k—1 kaukq ( )

N
=
o
|
AN
|

&
=
ES
L

(1>

Vg—1jk—1 —d —1
where 7 is an hyperparameter. The reasons why the actual models are
choosen stem from the following facts:

e time-update of the degrees of freedom: the degrees of freedom
of an inverse Wishart are related to the precision of the corresponding
expectation. Since the prediction step is the operation that increase
the uncertainties, the precision shall decrease as the time T between
two consecutive measurement updates increase. The exponential model
considered takes into account this fact, and the decay parameter 7 rep-
resents how much sensitive is the prediction with respect the absolute
value of T'.

e time-update of the scale matrix: the second equation of (47) sim-
ply states that the predicted expected value of the shape matrix is the
same as the corrected expected value of the shape matrix, in fact (47)
is equivalent to

Xijk—1 o Xk

= Ek|k—1[X] :Ek—l\k—l[X]

(7.25)
in other words, the time-update considered states that it is believed
that the shape matrix doesn’t change too much between a time step and
another. This is reasonable if the sampling interval T is ”small” with
respect the dynamic of the object tracked. In fact, despite the fact that
the width and the length of an extended object are reasonably fixed in
time, the orientation can change a lot between a sampling interval and
another, according to the dynamic behaviour of the object tracked.

Vi1 —d—1  vp_qpm1 —d—1

7.3.3 Joint kinematic-shape prediction

According to the previous results for the prediction of the kinematic state
and the shape state and the joint predicted density is given by

Prefi—1 (2, X) = prejo—1(2]X) preje—1(X)
= N(z;2ppk—1, Pejp—1 @ X) IW(X; vgjp—1, Xijh—1)  (7.26)
£ NIW (2, X5 p—15 Pojk—1 Vije—1, Xkjk—1)
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where NZW(u, A, v, ¥) denotes the so-called Gaussian-inverse- Wishart prob-
ability density, defined over the product space R%% x SiXd, where S, is the
the space of the SPD matrices, and characterized by the four parameters
peR¥ A €S, veR, Ue S

7.4 GIW corrector

7.4.1 Measument model

Let y,, € RP, where p = 5 - d for some § representing how many variables
are observed in one dimension. The measurement model considered is the
standard linear and Gaussian model

Y, = Crxp + v (7.27)
where the d-dimensional observation matrix Cj € RP*5? is given by
Cy, £ H,® I, (7.28)

for a 1-dimension observation matrix Hj, € R5%5. The measurement noise
vy, is assumed to be zero mean Gaussian with covariance equal to the shape
matrix

v ~ N(0, Xg) (7.29)
this choice for the measurement noise arise from the following considerations.

1. in principle, every measures are scattered around the object because of
the random measurement error (whose covariance is usually denoted
as Ry) and because the reflection points of the objects are randomly
illuminated by the sensors. In order to take into account this two
phenomena one can define the simple model for the effective power of
the measurement noise as

Ry + X, (7.30)

where the X, takes into account the fact that bigger is the object and
bigger is the distance between the reflection points, so larger is the
”observed” distance between the measures.

2. due to equation (59), one can see the measures, which are generated
by the individual reflection points with a measurement error Ry, as
generated (only) by the centroid with an equivalent power Ry + Xj.

3. assuming that the object extension is much bigger than the imprecision
of the sensors, i.e. X > Ry, the equivalent power of the measurement
noise reduces to X, so the actual model is taken in consideration.
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7.4.2 Likelihood

Since the measurement model considered is linear and Gaussian, the single
measure likelihood is Gaussian as well, in particular

Ce(ylw, X) = N(y; (Hi ® la)z, X) (7.31)
as a consequence, the joint likelihood of the set of measures y, = {y},...,yp*}
assumes the form

Nk )
e(yle, X) = [[N (s Crar, X) (7.32)
i=1

as one can show after some simple algebraic manipulations, such likelihood
can be factorized as follows

le(ylz, X) c N (y; (Hy ® 1)z, f) W, (7; ng — l,X) (7.33)
k

where are introduced the following statistics of the measurement set yj

e mean measure: defined as

=

A

y

3

ng
> i (7.34)
kst

its likelihood is the Gaussian N (g; (Hg ® 1)z, %),

e scatter matrix: defined as
Y& -9 —9) (7.35)
its likelihood is given by the Wishart W, (Y;ny, — 1, X).

7.4.3 Correction

Given the predicted joint density, the corrected density is given by the Bayes
equation. For simplicity, only the numerator of the Bayes equation is dis-
cussed and the normalizing factor is considered absorbed by the proportion-
ality sign. The corrected density can be factorized as follows

Pk, X) oc b (y|2, X) prjp—1(z, X)
X
X [N (ZU% Clcx7nk> N (@3 251, Prji—1 © X) (7.36)
X [,CW (Y;nk — ].,X) IW(X, Vk|k—1an|k—1)]
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e Gaussians product: due to the fundamental Gaussian identity, the
first two factors give

X
N <y; Cyx, le) N (5 k-1, Prjp—1 @ X)

=N (7 Ukj—1, Sk X) N (2; 24, Prppe ® X))
(7.37)
where, as always, the ygr_1, Xx are given by the Kalman predictor

Urlh—1 = (Hi @ Ig) g1

1 (7.38)
Sy o + Hy Pyj—1 Hj,

(1>

while ), and Il are given by the Kalman corrector
Li & Py—1 HipS; '
Py & (I — Ly Hi) Pyjjo—1 (7.39)
Tk £ Tt + (L © 10)(§ — Jrjp—1)

now note that the first factor on the RHS doesn’t depends on the
kinematic state xj but only on the shape state X . Due to this fact,
it is convenient to express such factor in the following pseudo inverse
Wishart form

1
N (7 U1, Sk X) o< | X| 7% etr (—2NkX_1> (7.40)

where it is introduced the spread matrix

Ni 2 (J = Yrpp—1) (7 — ?k\kq)/sﬁl (7.41)
in conclusion,
N (y; Cyz, ii) N (@ 21, Prj—1 ® X))

) 1
= | X[ = etr (—QNkX_l) N (@; 2k, Prp © X)
(7.42)

e Complete product: the corrected density gets the form

Pr|e(®, X) = N (25 T, P @ X) F(X) (7.43)
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where

1
F(X) 2 |X,| % etr (—QNkX_1>

(7.44)
X W, (Ying —1,X) IWa(X; Vi1, Xnjk—1)
after some elementary calculations, turns out that
F(X) xIWy (X; Vil Xk|k) (7.45)
where are introduced the corrected parameters
Vk|k £ Vglk—1 + Nk (7.46)

Xipe & Xpppm1 + N + Y

in conclusion, the corrected density has the following final Gaussian
inverse Wishart form

Pk (2, X) o< N (5 2y, Prje @ X) IWa (X3 Vs, Xii) (7.47)

7.4.4 Joint kinematic-shape correction
The corrected density is proportional to a Gaussian inverse Wishart
Prej (@, X) o NIW (25 2k, Projier Vielsor Xielie) (7.48)

where the Gaussian parameters are given by the Kalman corrector (wich acts
on the measures g of to the object centroid)
Li & Pyp—1 Hp Sy '
Py & (Is — LiHp) Pyj—1 (7.49)
Tk = Trjp—1 + Li[y — (Hp @ Lg)xpj—1]
and the inverse Wishart parameters are given by

Vk|k £ Vi|k—1 + Nk
a _ (7.50)
Xk = Xgjp—1 + N +Y

7.5 GIW estimates

Given the corrected density NZW (xk‘k, Prjks Vijks Xk‘k), the kinematic state
and the shape state are estimated as follows

Tk = Tk|k

. X (7.51)
Xy K|k

Vk:\k 72p72
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moreover the covariance of the kinematic state is

Iy 2 P @ Xypw (7.52)

7.6 PHD implementation

7.6.1 GIW-PHD model

By denoting the augmented true state of the generic object as the (s-d+d?)x1
column vector )

& 2 [} (vech[X,))] (7.53)
follows that the RF'S model considered by the GIW-PHD is

Xk+1 = f(Xk) UBg

Yi =h(Xg) UCy (7.54)

where, as usual,

e the RFS of survived objects f(Xy) is multi-Bernoulli with parameters
{ps(&)s Prr1jk(-[€) }eex,, where ps(€) is the probability that the object
¢ survives and 4115 (£'|€) is the probability that the object &, knowing
that survives, moves in &’. Due to the linear-Gaussian motion model
considered, the transition density (relative only to the kinematic state)
has the Gaussian form

Prpp—1 (@' | X 2, X) 2N (2 (Fs @ Ig)z,Ds @ X') (7.55)

e the RFS of birthed objects By is Poisson with intensity Ig(-). The
simple choice of the GIW-PHD filter here is

vB
In(€) £ Y wi NIW (v, X; &%, Ph, v, Vi) (7.56)
i=1
where the parameters are defined by the designer of the filter;
e the RFS of detections h(X}) is a mixed Bernoulli-Poisson RFS with pa-
rameters {pp (), Ip(-|€) }eex,, where pp(§) is the probability that ob-
ject € is detected and Ip(+|€) is the intensity of the detections produced

by &. Since the measurement model considered is linear-Gaussian, the
detection intensity is

Inyle) 2 A3 [TV (v: (Hso ® La)z, X) (7.57)
yey

e the RFS of clutter measures Cj, is Poisson with intensity Ic(-).
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7.6.2 GIW-PHD predictor

Theorem 13. Consider the GIW model and suppose that the corrected
PHD at time k — 1 is the following non-normalized mixture of Gaussian
Inverse Wishart densities

Dy _q1pi-1(8)

Vig—1|k—1

= Z Wi 11 NIW (f;‘ﬁc—llk—lvPli—l\k—lvyli—uk—lv Vki—uk—1>
i=1
(7.58)
then the predicted PHD is given by
Dijp—1(8) = Is(€) + Dy 1 () (7.59)

where the PHD of survived objects is the following non-normalized mixture
of Gaussian Inverse Wishart densities

Vi—1lk—1
5 . » . . ,
D@ = 3 wipees NOW (&8ss Pl vt Vi) (7:60)
i=1
where the predicted weights are
Whik—1 = PS Wh_1]j—1 (7.61)
the predicted parameters for the kinematic state are

ﬁqkq 2 (Fs® Id)xﬁcfukq

i A 3 / (7'62)
Pr—1 = Fs Py, Fo + Dy
while the predicted parameters for the shape state are
V}i\k—1 2 exp(=T/7) Vli—1|k—1
i Vilk—1 — d—1 (763)
Vi1 = e Vi—1jk-1

Vgp—1k—1—d—1
Proor

The objective is to compute the following PHD
DRjp-1(&") = Dy—1jo— [Brp—1(€)]

Vik—1|k—1
= > pswiyp s |:/90kk—1(€/|£)
=~
SWhlk—1

x NIW (fé %—uk—p Pli—1|k—1’ V;i—uk—u Vki—1|k—1> dﬁ]
(7.64)
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now by factorizing the transition density as

@k|k71(§/‘§> = ‘Pk|k:71(x/‘le37aX) ¢k|k71(X/|an) (7.65)

and assuming that opp—1(X'[2, X) = @gp—1(X'[X), follows
/@k\k—1(§/|f)NIW (53%—1%—171312—1\1@—17V/i—1|k—1asz—uk—1) d¢

= //\/(ff/5 (Fs ® Ia)z,Ds © X') N (z;iZ—l\k—l’Pli—llk—l ® X) dx

kinematic part

X/@k|k—1(X/|X)IW (X§Vlic—1|k717vkifl\k71) dX

shape part
(7.66)
kinematic part

with the additional assumption that X ~ X’, the integral involving the kine-
matic part can be solved by applying the foundamental Gaussian identity,
yielding after some basic computations to

//\/(3«"/§ (Fs ® Ia)z,Ds @ X') N (x?jzfl\kflaplifl\kfl ® X) dz

(7.67)
=N (m’; Thje—1 Prjp—1 © X/)
where ) N
Thpo1 = (Fs ® La)Bp—1jp—1 (7.68)
tk1 = Fs Pyt Fi + Ds
shape part

the integral involving the extension part is heuristically defined, whatever
it is the form of the transition density yy,—1(X’|X), to be the following
inverse Wishart

/¢k|k—1(X/|X)IW <X;Vllc—1|k—17vlczfl|k71) dX = 2w, (X/?Vlzc\kfl’vlzlkfl)
(7.69)
where ) ,
Vlzc|k71 2 eXp(_T/T)Vi:fukq
Vk|k71 —d—1 i (770)
—71Vk71|k71

1>

Vi
klk—1
! Ve — d
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joint kinematic-shape state
the combination of (38), (39) and (41) yields to the Gaussian inverse Wishart
density

/@klk—l(fl‘f)NIW (&%71\1@71» Plifl|k71’ Vlicfl\kfh Vki71|k71) dg

= NIW(E s &g 1s Plje—1s Vii—1s Vi)

(7.71)
and so, according to (36),
Vg—1|k—1
D/E\k—1(§/) = Z W1 NIW(E3 83— 15 Prji—1 Vi1 Viepe—1) (7.72)
i=1
which complete the proof. O

7.6.3 GIW-PHD corrector

In order to simplify the derivation of the GIW-PHD corrector, the cell like-
lihood is derived before the complete corrector. In what follows will be
assumed § = 1, so only the position is measured, and denoted in short
Cc £ H; s ® I4. Moreover, the central factorization will be expressed in the
terms of the mean measure @, and scatter matrix Y, of a generic cell of
measures w, i.e.

H N (y;Cz, X) = Wa(Yw,|w -1, X) N <§W; Cz, |‘\jv(> (7.73)

yew

N
=Laux

where

gw £ ﬁ Zy Yw £ Z(y - gw)(y - gw)l (774)

yeEW yew

Theorem 14. Assumes that y is a d-dimensional position-only measure,
then

lHN(y;C%X) - NIW ($7X§x§c|k71aPli\kflﬂyli\kfhvkﬂkfl) =

yew

Loi NTW (x X; s Pt v, V,ZT,;Z)
(7.75)
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where the cell likelihood L,, ; is given by
”Ii\k—1/2
 (detvi, ) ra (vt/2)
L £ (Wd‘wlswyi lw|)™2 — /2 I
(det[Vkvlvkl]) HET e (V;i\kfl/?)

with I'y(+) denoting d-variate Gamma function,

Ta(z) 2 n57 ﬁr (:p ! ; 1) (7.77)

i=1

(7.76)

and the parameters of the Gaussian inverse Wishart density are the following:

¢ kinematic part:

1
[wl

i

A 1
Yelk—1 = ka\k 1

lI>

Sw,i + Hy Py H

Lui & Pl Hi S5 (7.78)
P& (I~ Lw,z‘Hl,s)Pm_l

x\;cvl,]i A x2|k71 + (Lw,: ® Ig) (@w - g/i\lwl)
e shape part:

(T = Gpp—1) o — i)’
Sw,i

(1>

Nw,i

(7.79)

Vilk 2 Vhjpor + [l

Vil & Vs + Yo+ Nus
Proor
Start from the followin relationship,

[TV Cz X)

YyeEW

= X 7 7 % 7
Laux N (yw; Cz, ) N (x;xklk—lv Pk\k—l ® X) -IW (X; Vilk—1> Vk|k—1>
|wl
(7.80)

i i i i _
- NIW (va,xkuc—pPk|k-17”k|k—1vvk|k—1) =
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the product between the two Gaussians give rise, thanks to the fundamental
Gaussian identity and the basic properties of the Kronecker product, to the
factorization

_ X i i
N<yw;cl'7lvv|> .N(’I;Ik‘k—l’Pk‘k—l ®X)

(7.81)
:N(x;:c‘]'c""]i,P,‘ch}j ®X) -N(Qw;ﬁziw_hSW,iX)

where

1 .
Swi = 1+ His Py 1 Hi

|

?312|k—1 £ Ox2-|k—1
Lus & Py (HY, S (7.82)
Pt & (I, = Ly iHy ) Pl y

Teik = Thppo1 + (Lwi @ 1a) (ﬂw - ??iiqkq)

so that

[H N (y; (H1,s ® o)z, X) | - NIW (va;xZIk—laPli\k—l’yli\k—l’vkilk—1> =

yew

N (x; x}’;'l’,i, P;si’kl ® X) N (gw§ g;dkflv Sw,iX) : L:aux “IWgq (Xv Vlic|k71a Vki|k71>

B3
‘ _ (7.83)
the factor F, by using the abbreviations v £ V]i‘k_l, = Vilk—1, can be
written as follows

_Iwltvtdtl 1 _ 1
F = K; (det[X]) I (N, + Y +V) X (7.84)
where
_dwl 1 (det[V])?
K1 £ (2m)7 % (S |wl) ééudr[]()u)
5 v
o T (7.85)
N & (Yw — Z/k|k_1)(yw - yk\k—l)
o Sw,i
now the normalization constant K7 can be adjusted in order to write F' in

(1>

terms of an inverse Wishart with parameters V,‘;V‘,i 2 |w| + V]il Py V,:l' i
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Ny,i + Y., + Vki\kq- The objective is to introduce the normalizer

_ Il

det[Ny,; +Y, +V]) 2

K> £ ( (wltv) d W|+u> (7.86)
2= T (T)

in the expression of the factor F', so

K _ lwltvdd+1 1 >

F= ?1 K> - (det[X]) Tttt otr [_2 (NWJ +Y, + V) X—l] (7.87)
Ny
Bl =IWa(Xsvp i Vi)

the cell likelihood L, ;, after some algebra, can be written in a more clear
form as follows

i Viik_1/2 w,i
B KL y (detlVi ) a (v5/2)
Lwi =4 = (S i [w)) ™2 TR
2 w,i1) “* @
(det[Vklk]) S (Vk|k—1/2)
(7.88)
O

Theorem 15. Consider the GIW-PHD model and suppose that the pre-
dicted PHD at time k—1 is the following non-normalized mixture of Gaussian
inverse Wishart densities

Vk|k—1

Dyjp—1(§) = D whp_ NIW (5;i‘};\k—upli\k_uVzi\k_lvvzf\k—1) (7.89)

=1

and assume that all the heuristic considerations of the GIW filter hold (in-
cluding the hypothesis that y is a d-dimensional vector - so position-only
measures are considered). Then the corrected PHD is given by

Dyi(§) = DE\]}’?—I(E) + Z Z D/?\/c—l(fvw) (7.90)

PByweP
where the PHD of undetected objects is the following mixture of Gaussian
inverse Wishart densities

Vk|k—1

DkN|113—1(£) = Z wZ\kNIW (f;f2|k—1apli\k—1%i\k—1vVki|k—1> (7.91)
=1
with ‘ ‘
Wi 2 (1= pp - (1= exp (=Ap))] Wiy (7.92)
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and the PHD of detected objects in w is

Vi|k—1

Dy (& w Z wit NTW (5,@;(}6,13;';”,%]“;,1/,;[,?) (7.93)
with ~
W, A gwm
Wiy = WP o,
~ by wl
lw,i 2 pp - exp(—Ap) - (;3) Lu,i - Wiy
Vk|k—1 (7.94)
do 2 00(1W) + D b
i=1
w Ny HWEP dW
» 2
ZPEIy HW’GP dw
PRrROOF
The PHD of non-detected object is trivivally given by
Dk|k (&) = ANP(y|€) Dyjr—1(€)
Vi|k—1
= 1—pp-(1—exp(—A whi,
; [1—pp-( p(=Ap))] klk—1 (7.95)

Swi
x NIW (5?55%1@71’ Piik_1 Vi1 Vki|k:71)
Now the turn of the detected PHD,
D/?\k(ﬁ) = AP(y[€) Dyjp—1(€)
LS wZ\k—lNIW (5§ ‘%;c\k—v Pli,|k—1’ VElk—15 Vk\k—1>

DI N

PHyweP i=1

2Dp . (Ew)
(7.96)
focus on the product between the likelihood 4, and the Gaussian inverse
Wishart density inside the summation in . For the GIW model holds

. Ap - N (y;Cz, X
lw=pp-exp(=Ap)- [[ = (ch = X)

yew

[w]
=pp - exp (=Ap) <?CD> . H./\/(y;C'x,X)

YyeEW

(7.97)
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consequently,

lw - NTW (53x2|k—1,Pé\k—17 Vii\k—lv Vki\k—l)

AD w w1
=pp -exp (— )\D)<IC> “Lwi -NIW (gvxk‘ka klk 1 k|;i 1aVk|k.z_1)

(7.98)
which permits to write the detected PHD as
Vilk—1
DR, (6w Z wp L NTW (g,xk‘k, T ol 1) (7.99)
with "
Cwi 2 pp - exp ( ( ) Lo wk‘k 1 (7.100)
and
Vi|k—1
w=01(wl) + Y L (7.101)
i=1

O
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Chapter 8

MEM-EKF* filter

8.1 Summary

In this chapter is discussed the second type of filter for extended objects
that is capable to estimate the shape of the tracked object, i.e. the MEM-
EKF* filter. Unlike the GIW filter, which was born to track the flocks of
multiple independent point objectéﬂ (the estimated ellipse, in fact, represents
the shape of the flock), the MEM-EKF* is specifically designed to track
extended object. This fact can be seen from the following properties, that
are reflecting the dynamic of an extended object, of the MEM-EKF* filter:

e the variance of the position of the estimated ellipse is independent on
its area. For the GIW filter such variance is proportional to the area
of the estimated ellipse;

e the variance of the orientation angle of the estimate ellipse can be
choose independently from the variance of its two radii. For the GIW
filter such variances are equals;

As a consequence, the MEM-EKF* filter achieves better performance than
the GIW filter when this two algorithms are compared in an estimation
problem involing an extended object (rather than a cluster object).

The chapter is structured as follows

e in the first part are introduced preliminary concepts, such a how the
MEM-EKF* represents the shape of an extended object and the what
type of measurement vectors are employed to perform the correction
step.

Lin literature this type of estimand is usually called cluster object

145
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e then are discussed the standard motion and measurement model and
the single extended object predictor and corrector;

e in the final part is introduced an improved and more general version
of the standard MEM-EKF* (which differs from the standard version
in the motion model) deviced to track manuevering objects and after
that the PHD extension of the general MEM-EKF* filter.

In the first part of the chapter is discussed how the MEM-EKF* represents
mathematically the shape of the object and

8.2 Shape parametrization

One of the main difference between the GIW filter and the MEM-EKF* filter
is that the shape of an object is not parametrized by the independent entries
of the shape matrix but it is parametrized by the director angles and the
diameters of the representing ellipsoide.

For example consider the planar case, here the shape parameters of the
GIW filter are X117, X192, X922 forming the shape matrix

Xll X12
X = 8.1
[, XQJ (8.1)

while the shape parameters of the MEM-EKF* filter are:

e [, € RT, the biggest diameter of the representing ellipse, called lenght
of the object. Since an extended object is assumed to be rigid, the real
length is a quantity that it is considered fixed in time. From the point
of view of the estimation, the length is well represented by a random
variable with a small variance;

e I, € RT, the smallest diameter of the representing ellipse, called width
of the object. Once again, due to rigidity of the objects, the real width
is a quantity that it is considered fixed in time as well. Likewise the
length, the width is well represented by a random variable with a small
variance;

e 0 € [0,27], the angle between the horizontal axis of the reference frame
and the lenght of the representing ellipse, called orientation of the ob-
ject. Since an extended object can moves in space, the real orientation,
in the same manner as the real position of the object, is a time varying
quantity. From the point of view of the estimation, the orientation is
well represented by a random variable with large variance.
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In what follows, it will be always assumed for simplicity that the tracking
problem is planar. However, with some effort the MEM-EKF* filter can be
adjusted to solve also tracking 3-dimensional problems.

The relationship between X and the MEM-EKF* parameters f 0, 11, I5
is clear in the planar case: since X is symmetric, it is possible to compute
its spectral decomposition.

X =VAV' (8.2)

where V' is an orthonormal matrix, and thus, due to planar assumption, can

be expressed as
cos@® —sin@
V= {sin@ cos @ } (8.3)

while A is diagonal matrix whose diagonal elements are the eigenvalues Ap,

Ay of X,
(a0
=Py ). ”

Now, since X > 0, the eigenvalues are A1, A2 > 0 and consequently the
spectral decomposition of X can be also expressed in the following form

X =588 (8.5)

where it is introduced the profile matrix

a __|cos@ —sin@| [vVA1 0
SEVVA= L‘int‘) COSO:| [ 0 \/)\2] (8.6)

the random matrix S depends on @, which is the orientation angle, and v/A1,
v/A2, which are the length and width 1, l. In conclusion, the MEM-EKF*
filter expresses X in terms of 0, I, Is.

Thanks to the special parametrization choosen, the MEM-EKF* filter
can track separately the orientation, the lenght and the width of an extended
object. This feature, in concjunction to the fact that in a typical scenario 1y
and I, are fixed in time while @ is time varying, permits the MEM-EKF* to
achieve better performace than the GIW filter.

However there is a price to be paid, which consists in the introduction of
a new and highly non-linear measurement model called multiplicative error
model (MEM).

8.3 Multiplicative error model

In this section is derived the MEM model, which expresses how a measure
vector y is generated by the tracked object .
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The MEM model assumes that y € R2 is a position-only measure ex-
pressed in cartesian coordinates. Moreover, due to the fact that the object
tracked is assumed to be extended, the MEM-EKF* assumes that at every
time step are available multiple measures y,lc, ... yp*¥, where ny is assumed
to be known. Every measure is assumed to be originated by a random point
z on the surface of the object and corrupted by an additive Gaussian noise
v.

Y = 2k + Vg

(A NN(O,RU) (87)

the problem is to relate z with the shape parameters Iy, I3, 8. In the next
subsections this task is achieved step-by-step by considering different shape
models.

8.3.1 Unit disc

Assume that the object is positioned in the origin of the reference frame and
its shape is a disc with unitary radius. In this case a random point z € R?
on the object surface can be expressed as follows

Lj - @ (5.5)

where, if Coq £ {h € R? : h? + h3 < 1}, the random vector h € R? is
uniformly distributed on the disc Cp 1

h~U(Cy1)

the reason why the uniform model is choosen arise from the fact that in
general in a tracking problem the points of an extended object are equally
visible. The random vector h is called multiplicative error and its moments
are

o

E[h] = {8] Cov[h] = Eﬁ

the origin of its name will be more clear in the next subsections.
In conclusion, trivially, z is uniformly distributed over the unit disc C £
{&,m € R : €2 +7n? < 1} of measurement space

]éRh (8.9)

[l Lo

z ~U(C) (8.10)

which means that represents a random point of the extended object.
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8.3.2 Aligned ellipsoidal disc

Assume that the object is positioned in the origin of the reference frame and
its shape is a disc with radii Iy, I alligned to the axis of the reference frame.
In this case a random point z € R? on the object surface can be expressed

as follows
Zel| l1h1 _ zZel l1 0 h1
Ln] B [l2h2] a Ln} a [0 la] [h2 (510
M ——
z E(li,lz) h

note that now the multiplicative error h is scaled by the extension matrix
E(l4,15): for this fact is called multiplicative, while is referred as an error
because it is random.

Since h ~ U(Cy,1), the generic point z is uniformly distributed over the
ellipsoidal disc with radii 1y, I

z ~ L{(Ellllh)

2 2
, ll l2

thus z represents a random point of the extended object.

8.3.3 Misaligned ellipsoidal disc

Now assume that the object is still positioned in the origin and its shape
is ellipsoidal, but assume that the object is misaligned with respect the
reference frame according to an orientation angle @. In this case holds

{zg] . {cos@hhl - sin@lghg]

zy sin@lihy + cosBlshs
ze|  |cos@ —sin@| [l 0] [hy (8.13)
zy| |sin@ cos@ 0 Is| |ho
~—~— —————
z R(8) E(lil2) h

and, as a consequence of the randomness of h, z is uniformly distributed
over the ellipsoidal disc Ellg 4, i,

z ~ U(Ellg,lhb)

Ellg, 1, 2 {f,n €R: (Cosagl_Sine")Q + (SinegerOSO")Q < 1}
1 2
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if, moreover, the object is positioned in a generic point m € R?, the model
for z gets the form

[ZE} _ [mg +cos@lihy — sin@lghﬂ

zy my, +sin@lihy 4 cos @ lxho

ze|  |me n cos@ —sin@| [l; O] [hg (8.15)
zy| My, sin@ cos@ 0 Ily| |ho

M~ e e —————

z m R(e) E(ll ,lg) h

from which follows that z is uniformly distributed over the ellipsoidal disc
Ellrn, 6.1, 1,

z ~ U(Eum,g’ll,lz)

s fecn (0E=mO_s0lnm) )
Y 2 (8.16)
N (sin@(ﬁ—mg);—COSG(n—mn))2 < 1}
2

meaning that z represents a random point on the surface of the extended
object considered.

8.3.4 MEM equation
The simplest form of the MEM is the following
Y = My +R(0;€)E(l1,l2) hy + v (8.17)

which can be written in a more compact and general form. By introducing
the following quantities

e kinematic state: 2s-dimensional vector containing the position m
of the object and its first s — 1 derivatives (whereas s is a design
parameter)

rem' m .. (mGy (8.18)

e shape state: 3-dimensional vector containing the shape parameters
p2[o L L) (8.19)
e observation matrix: matrix that maps r to m

HE [ 0Oy(s-1) (8.20)
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e profile matrix: matrix that encodes the roto-dilation perfomed over
the measurement error h

cos@l; —sinBl,

N —
S(p) = R(O) E(llal2) - Sinell +C050l2

(8.21)

note that S(p) is a random matrix and its distribution, which is sig-
nificantly complex to be derived, is induced by the distribution of p.

turns out the final expression of the MEM
Yy, = Hri + S(py) hi + v (8.22)

in conclusion, the MEM splits the measure y,, in the sum of three terms:

1. the first one, Hry, expresses the location where y, will be generated.
Such location is a neighborhood of the position of the extended object,
i.e. the centroid my;

2. the second, S(py,) hy, expresses the fact the y,, can be generated by any
point zj of the extended object, which is not necessarely the centroid
my,. This term encodes the shape of the object;

3. the third, vy, expresses the fact that y,; is measured with some error,
so y;, does not contain the exact position zj of a random point on the
surface of extended object.

8.4 Linearized multiplicative error model

According to the MEM, the state of an extended object is the (2s + 3)-
dimensional vector

z2 [ p (8.23)

and its easy to see that the relationship between the state & and the measure
y, because of the shape term S(p), is non-linear. Due to this fact, the
MEM-EFK* corrector requires a linear approximation of the term S(p)h.
By considering p as the center of the linearization, follows

S(p)h = S(p)h + Jp(p —p) (8.24)
where the Jacobian J of S(p)h evaluated in p, as one can show, has the

following structure
dS(p)h| _ [W'N
A oo | = |n' (8.25)

(1>
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and J; and J5 are respectively the Jacobians in p = [é I ig]’ of the first row
S1(p) and second row Sa(p) of the profile matrix S(p), i.e.

5 9(S1(p))

J _ 0 [cosOly | _ —sinfl, cosf 0
T op 5 Op|—sn@ly|  |—cosfly 0 —sinf (8.26)
J. A d(S2(p))’ _ 0 [sin@1; _ fcosé Zl sinf A '
2 op |, Op |cosOlayf, —sinfly 0 cosf
the linear form of the MEM is
Yy, = Hry + S(pr) hi + Jp, (Pr — Pr) + vk (8.27)

As a final remark note that, on the other hand, the GIW corrector does
not require any approximation on its measurement model (which is linear by
itself).

8.5 Pseudo-measurement model

Besides the 2-dimensional measure y, the MEM-EKF* filter considers an
additional vector Y € R3, called pseudo-measure, to perform the correction
step. As will be shown, y will be used to get the corrected estimate of the
kinematic state 7, while Y will be used to get the corrected estimate of the
shape state p. For this reason Y is introduced besides y.

In the next subsections is discussed the definition of the model for Y
and a an intuitive explanation about why Y is used to perform the shape
correction.

8.5.1 Definition

Let fty = [fy.¢ ftyn]" be the expected value of the generic measure vector
Yy = [y¢ y,|’, then the pseudo-measure Y € R3 is defined as

N (yg - /v‘yé)z
Y= (yn - /‘ym) (8.28)
(yg - My,&)(yn — Hy,n)

in words, the pseudo measures is a vector that contains the quadratic devi-
ations of the measure from its expected value.

Its easy to see that the pseudo-measure can be written in the following
algebraic form

Y = Fl(y — 1y) @ (Y — p1y)] (8.29)
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where

(8.30)

— o O
o O O
o = O

8.5.2 Motivation

Assume for simplicity that R, = 0 (no measurement noise) and assume to
know exactly the kinematic state r and the shape p of the object. Despite
these positions, the measure y is still uncertain because it is not known what
specific point z = Hr+S(p)h of the object will be observed. This fact can be
easily seen mathematically from the expression of MEM, which now reduces
to

y=Hr+ S(p)h (8.31)

here the multiplicative error h, which acts as a point selector, is still random,
so y is random as well. It follows immediately that the covariance of vy,
denoted as X, is

,_ S()Sp)
4

On the other hand, according to the general definition of covariance ma-
trix,

Yy = S(p)RuS(p) (8.32)

Sy 2 E[(y — 1y)(y — 11y)'] (8.33)

thus by comparing the two expressions of ¥, and by switching the represen-
tation from matricial to vectorial follows

F
E[Y] = o vec[S(p)S(p)] (8.34)
which shows that the pseudo-measures Y is a random vector that is disperse
around a particular transformation of the shape p of the tracked object.
Hence Y, up to the corrupting noise, contains information about p and thus
it make sense to use it to get the corrected estimate of p.

8.6 Linearized pseudo-measurement model

It is clear that the pseudo-measure Y is related to the object state  through
a non-linear function. The MEM-EKF* corrector requires also a linear ap-
proximation of the pseudo-measurement model. In order to get such ap-
proximation, start by observing that, as h and v are zero-mean noises, holds

ty = Hiir (8.35)
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where p,. is the expected value of the kinematic state r. Consequently, it
follows that the non-linear relation between Y and x is

(Hi(r — pr) + S1(p)h + v¢)?
g(r,p) £ (Ha(r — pir) + Sa(p)h + v,))?
(Hi(r — pr) + S1(P)h + ve) (Ha(r — pr) + S2(p)h + vy)
(8.36)
where H; and Hy are the first and the second row of the observation matrix
H. By applying the chain rule, turns out that the Jacobians of g(-,-) are
respectively

0

% =2(Hy(r — pr) + S1(p)h + ve) Hy
0

% = 2(Ha(r — p1r) + S2(p)h + v,)) Ha
0

% = (Hi(r — pr) + S1(P)h + ve) Ha

+ (Ha(r — pr) + S2(p)h + v,y) Hy

90, / (8.37)
= 2(Hy(r — pr) + S1(p)h +ve)h'Jy

op

0g2 o ’
o 2(Ha(r — pr) + S2(p)h + vy,y)h' Jo
0gs o ’
p (Hi(r — pr) + S1(p)h + ve) R 2

+ (Ha(r — pr) + Sa(p)h + vyy)R' Ty

thus, in conclusion, if # = [/ p/]’ is the center of the linearization, the

linearized pseudo-measurement model is

., 99 .
Y ~g(2) + Pz (:c —I) (8.38)
where
dg 81;2 aqp2
— = |52 =& (8.39)
oz & %
or op

8.7 Motion model

The motion model considered by the MEM-EKF* filter consists in two parts,
which are the kinematic motion model, which tries to represent the time
evolution of the position of the object, and the shape motion model, which
tries to represent the time evolution of the shape of the object.
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8.7.1 Kinematic motion model
It is defined as the following linear model
Trt1 = Ar Tp + Wy, (8.40)

where A, is constant matrix and w” ~ N (0,Q") is a zero-mean Gaussian
white noise. The typical choice for the transition matrix A, is the following

A, & Toep(s,T) @ I, (8.41)

where T is the sampling interval and Toep(s,T) denotes a Toeplitz matrixﬂ
with first row rg s—1, 7 and first colum c, defined as follows

A | T Tatl Tat2 e
I‘a,b,T - |:F (a+1)‘ / (a+2)' e o (8.42)
Ce £ []- le(c—l)]
for example, if s = 2 the transition matrix gets the explicit form

1 0T O

N 1T 100 (01 0 T
A, £ Toep(2,T)® I, = [0 1] ® [O J =lo 0o 1 o (8.43)

00 0 1

in other words, the choice for the transition matrix corresponds to model
the kinematic state rj with a so-called linear cynematic motion model. For

A . . . . .
s = 2 the generic linear cynematic motion model is referred as nearly constant

velocity (NCV) motion model, for s 2 3 as nearly constant acceleration

(NCA) motion model.

8.7.2 Shape motion model
It is defined as the following linear motion model
Pri1 = Ap Dy +wh (8.44)

where A, is constant matrix and w? ~ N(0,QP) is a zero-mean Gaussian
white noise. The typical choice for the transition matrix is

A, 214 (8.45)

2a Toeplitz matrix is a matrix in which each descending diagonal from left to right is
constant. Consequently, a Toeplitz matrix is identified by only its first row and its first
column (with the constraint that the first element of the previous row and column has to
be the same)
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encoding the fact that the shape parameters change slowly in time. This
is particularly true for the lenght and the width variables, but for the ori-
entation angle this model can be inaccurate if the tracked object exhibits a
fast-maneuvering motion.

8.8 Measurement model

The measurement model considered by the MEM-EKF* filter consists in two
parts, which are the MEM and pseudo-measurement model

Yy, = Hri + S(py)hi + v

Y. =Fl(y, — tyr) @ (Y, — by k)] (8.46)

the MEM-EKF* filter deals with the non-linearities of this model similarly
to an extended Kalman filter because it uses the Jacobians J; and dg/0p|;
to compute the covariance matrices of the corrected estimates. For this
reason the shorthand EKF, which indeed stands for extended Kalman filter,
figures in the name MEM-EKF*. The shorthand MEM, clearly, stands for
multiplicative error model and figures in the name MEM-EKF* in order
to remind the special model employed to represent the relation between a
measure and the state of the object.

8.9 MEM-EKF* predictor

Since the motion model is linear, the MEM-EKF* compute a standard
Kalman prediction. By denoting as 7 and p the estimates and as P", PP
their covariances, the MEM-EKF* predictor gets the form

Prik—1 = Ar Pr_1jk—1

T T T (847)
Pl = A Py AL+ Q
for the kinematic state, and gets the form
Prik—1 = Ap Pr—1jp—1 (8.48)

Phwa =4 Pl A+ Q7

for the shape state. Note that, since the covariance matrix QP is a design
parameter, the MEM- EKF* can filter out the noise from the corrected esti-
mates 0k|k, 11 ks 12 k|r With different intensities. This effect can be obtained
by defining, for example,

Q" £ diag(oj, 07, 07) (8.49)
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with o3 # o} (typicially 02 > o7). As just mentioned before, this is the
most important feature that allows the MEM-EKF* filter to achieve better
performance with respect the GIW filter.

8.10 MEM-EKF* corrector

The correction step is way less straightforward since the measurement model
is not linear. First of all, since the tracked object is assumed to be extended,
at every time step k are available nj measures

ye 2 g,y (8.50)

which are, according to the MEM, 2-dimensional position-only measures.
Likewise the GIW filter, the MEM-EKF* corrector assumes that ny, is known
and that the measurements are statistically independent. Due to this po-
sitions, the MEM-EKF* corrector performs sequentially |yx| = ny single-
measurement corrections,

2(0) & 4 (1) 4(2) o (k)

Teie = Thlk=1 4" Ty Thk g Thlk = T
.. —

A(0) & o (1) ~(2) s a s(nk)

pk\k = Pk|k—1 pk\k pk|k Prklk = pk\k

For each observed measurement y,(f), the MEM-EKF* corrector performs two
operations:

¢ kinematic state correction: compute f,(;&c, PIE‘ZI)CT according to f,(jl;l),
(@),

PUD" and the observed measurement Y

k|k—1
e shape state correction: compute firstly Yk(i) according to y](j) and
7 then compute pii, P{}? according to py|, Yy, Py, )" and the

)

observed pseudo-measurement Yk(l :

8.10.1 Kinematic state correction

The correction of the kinematic state is given by the so-called best linear
unbiased estimation (BLUE) correction equations

A1) _ AG-1) -1 () _ AG-1)
Pl = Trpem1 T 2ry 2y~ (U = U1 (8.50)
(@),r _ pli=1),r -1 '
Pk\k - Pk|k—1 — Xy 2y 2;"y

at his point the problem is to derive the explicit expressions of the moments

3}1&13@—1’ Yy, 2y according to the MEM.
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e predicted measurement: by expressing equation in terms of the
accumulated information available up to time £ and up to measurement

y,(:_l) turns out

(i A(i—1
y,(;‘)k,l = Hrl(:\kl (8.52)

e measurement covariance: according to the linearized form of the
MEM, one can show that

Sy~ HP W H +CT+ ¢+ R, (8.53)

where
— the first term is the covariance of the predicted measurement
G prati=1)
klk—1 = ATk-1
— the second term C7 is defined as
(i—1 (i—1
Sy ) S By )’

C! £ Sy )RS (B ) = 1 (8.54)

and it is the covariance of the term S (ﬁ,iﬂ;i)l)hk;

— the third term C*7 is defined as

Cll 2 tx [P Ty R

na [C Ch

ct= with i—1), 8.55
o o e I

B 4

and it is the covariance of the term Jp, (P, — Pr);
— the fourth term R, is the covariance of vy.

e kinematic cross-covariance: trivially is given by

Sy = P TH (8.56)

8.10.2 Shape state correction

Likewise teh kinematic state correction, the correction of the shape state
is performed using the BLUE equations, with the difference that now the
considered observation is the pseudo-measurement Yk,(l) rather than the mea-

surement y,(:). Hence, the correction equations gets the following form
A(8) _ a(i—1) 1y 0)  or(i-1)
Prjk = Prjp—1 T Yoy By (V7 — Yk\kfl)

(i).p _ p(i—-1),p -1
Pklk - Pklk—l — Ypy Xy E;Y

(8.57)
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now the problem consists into compute the moments Yk(lk i, Yy, Ypy

according to the pseudo—measurement model. Note that, given the ob-
served measurement y,g and its prediction y](ﬂ kl) the theoretical pseudo-

measurement vector (?7?7) reduces to the observed pseudo-measurement vec-
tor
i i i—1 i—1
v = Fla -y @ W) -y ) (8.58)

e predicted pseudo-measurement:, the predicted pseudo-measurement
is

(4)
Yk

= Fvec[Zy] (8.59)
)

¢ pseudo-measurement covariance: as one can show, according to a
result due to Isserli, the exact expression of the pseudo-measurement
covariance is

Sy = F(Xy @ 3y)(F + F) (8.60)

where
R 1 0 0 0
F=10 0 0 O (8.61)
0 0 1 0

e shape cross-covariance: according to the linearized form of the
pseudo-measurement model, one can show that

Spy ~ P M} (8.62)

where
281 (B, ) Ry
M; & 252(255;% )1)RhJ2
S By ) Bz + Sa(i ) Buy
25, (D,
252(p;§ﬁk1)1>J2
1By )2 + Sa By ) N

(8.63)

8.11 MEM-EKF* filter for manuvering objects

One limitation of the standard MEM-EKF* filter is that, since it consider a
linear motion model, it can not track accurately manuevering objects that
change rapidly (in relation to the sampling interval T') their orientation. This
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problem can be solved easily by changing the definition of the kinematic state
7 with the introduction of the steering speed

w20 (8.64)

and its first O — 1 derivatives w, ..., w(©~ 1 as a new kinematic state
variables.

8.11.1 Constant turn MEM-EKF* filter

In the simple case O = 1 the new definition of kinematic state is
re[m W . (mGYY ] (8.65)
accordingly, the motion models get the new forms

Trt1 = Aprp + Wi, (8.66)
Pit1 = AprTi + Appy + Ufi

where the transitions matrix are

A, £ diag(Toep(s, T) ® I, 1) A, £ 13 Ay 2 |:01><s T
O2xs  O2x1

} (8.67)
consequently, the new prediction equations are
Prik—1 = ArPr_1p—1
Pt = APy AL + Q7
Prik—1 = AprPr—1jk—1 + ApDrjr—1

Plf\kfl = APTPI:?iMkflA;W + APPIfflUcflA;’ +QF

(8.68)

on the other hand, the measurement actual model still holds but with
the new convention

HE [ 0Opxo5-1) 0] (8.69)

hence the new definition of the kinematic state does not change the correction
equations.

The resulting algorithm is called constant turn (CT) MEM-EKF* filter,
and can handle objects that performs manuevers characterized by steering
speeds that change slowly in time.
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8.11.2 General MEM-EKF* filter

If the steering speed w change rapidly (in relation to the sampling interval
T), one can consider O > 1 big enough. In this case the kinematic state is
[m’ m ... mCYY w @ .. w(o’l)]l (8.70)

and the new motion and measurement models still holds, with the conven-
tions

A, & diag(Toep(s, T) ® I, Toep(O, T))

0 oo (8.71)
A - é 1xs 1,0-1,T A é I
P |:O2><S 02x0 P 3
and
HE I Oaxa(s—1) 02x0] (8.72)

the resulting algorithm is the most general case of the MEM-EKF* filter
and, for this reason, is called general MEM-EKF* filter. This filter can
track reasonably well objects that performs manuevers characterized by a
w(©=Y that changes slowly in time.

8.12 PHD implementation

While the PHD extension of the GIW filter relys on the rigourous equations
of the general PHD filter for extended objects, the PHD extension of the
MEM-EKF* filter follows a more direct way by considering the GM-PHD
equations for extended objects.

In other words, the PHD filter based on the MEM-EKF* filter is a spe-
cial GM-PHD filter for extended objects (meaning that the GM-APB-PHD
corrector is employed) where the state of an object does not consist only on
the kinematic variables but also on the shape variables.

8.12.1 Predictor

The state of a generic extended object is defined as

z 2 [r p] (8.73)
and the relative motion model as
Ty = Az +wy (8.74)
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where
A £ diag(A,, Ap) Q = diag(Q", Q) (8.75)

consequently the transition density gets the following Gaussian form
%\k—1(1’|w) = N(z; Aw, Q) (8.76)

and so, by assuming a Gaussian mixture prior, the GM-PHD predictor (?77)
holds. The predicted PHD is

Dyjx—1(x) = Dp(z) + Ds(x) (8.77)

where the new born objects PHD Dg(-) is

Dg(z) = ZUJB N (w; 2B, Pg.i) (8.78)

i=1
while the survived objects Dg(+), assuming pg constant, is given by

Vg—1|k—1

Ds(z) = Y wipp—1 N (@5 210> Pejp-1.0)
=1

WEk|k—1,i é]95 W —1)k—1,i (8-79>

A
Tplk—1,i = ATp_1jk—1.i
A /
Py 1jp—1, = APp_qpp—1,4 +Q

8.12.2 Corrector

The corrector is defined more heuristically with respect to the predictor. The
idea is to embed the MEM-EKF* corrector into the corrected PHD provided
by the GM-APB-PHD corrector, which is

Dyyi(z) = Dxp(x) + > Y Dp(a; P,w) (8.80)

PByweP
where

e assuming pp and Ap constant, the non-detected objects PHD Dnp(-)

18
Vk|k—1

Dyp(z) = Wik iN (T3 T\ —1.55 Prolb—1.4
ND(7) ; kN (T3 T k1,65 Prjr—1,1) (8.81)

Wiik,i = [1 = (1 = exp(=Ap)) pp] Wijk—1,q
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e the detected objects PHD Dp(+;P,w) is given by

Vi|k—1

Dp(z;P,w) = Z wf‘];’” x; xklk,P,:V‘kl)

||l>
[
H
S

waz P
k|k
\ dy

[w
ly.; = pp exp(—Ap) ()\D> Ly (8.82)

Vi|k—1

dy 2 6, (lw]) + Z i

2 HWG'P dW
ZPEIy HWEP A

where the cell likelihood?l is defined as

i 2 [T N W vie1s S (8.83)

yeEW

wp

and the corrected parameters xk‘ s P]‘c"i kz , yﬁl’fcil, Sw,i are given by the

Kalman corrector equations (by correcting the state of object i ac-
cording to cell of measures w, which is represented by the joint vector

Yw)-

The PHD extension of the MEM-EKF* changes the definitions of the cell
likelihood and the corrected parameters.

Cell likelihood

Since the MEM-EKF* perform the correction according to y, Y, the cell
likelihood is defined according to the model of the joint vector

yely v (8.4
here there as some critical observations about the model of V:
e the model for y is

Pyli(¥) = N (W Yijp_1> Sy) (8.85)

3the cell likelihood is a function that measures how much likely is the event ”object 4
have generated the cell of measurements w”
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where, according to the MEM moments,

7 A ~
Yrjk—1 = HT -1,

: , ) ) 8.86)

A 7,7 ! I, II, (
ZL_HPICUCAH +CV"+C "+ R,

and Pgr_1, P]:"]iil, Ccli, ¢l are moments relative to the predicted

object . This model is reasonable if the covariance of py;,_; ; is small:
in this case y is, with a good approximation, Gaussian;

e the model for Y is
py(Y) £ N(Y; Y1, 2y (8.87)

where, according to the pseudo-measurement moments,
ki|k71 2 Fvec[Z!]

i A i ’ i £/ (8.88)

y = F(X, @ X)) (F + F)
This model is a rough approximation because, clearly, Y is not Gaus-
sian. To see why, it is sufficient to observe that the first two com-
ponenst of Y are non-negative random variables because are squared
innovations. On the other hand, a Gaussian random variable can get
a realization that is negative, hence Y is not Gaussian.

then, by exploiting the fact that y and Y are independently distributed
(because, as one can show, Y is an uncorrelated transformation of y), the
joint model, which defines also the cell likelihood, gets the factorized form

L= Py1i(V) = pyli(W)py i (Y)

) (29

Corrected parameters

Finally, the |P| - vyp—1 corrected parameters x‘;c"l’,i7 P,;N‘kf are computed by an

ensamble of [P| - vy,—1 MEM-EKF* filters, where each filter performs the

correction of the predicted object 7, which is characterized by the predicted
W,17 W .

parameters Tyt Pk| according to the cell of measurements w.

i
Yk|k—1
7
k|k—1

)
k—1°



Chapter 9

LO-MEM filter

9.1 Summary

This chapter, which contains the main contribution of this thesis, is dedicated
to the derivation of the LO-MEM filter, a new algorithm for the extended
object tracking. In short, the LO-MEM filter is a slight modification of
the MEM-EKF* filter, where are considered a new prediction model, called
Lambda:Omicron model, and a new measurement model (always based on
the MEM).

The chapter has the following structure:

e in the first part is defined the Lambda:Omicron model. Firstly it is
introduced in two simple forms (the 1:0 model and the 2:1 model), then
its general form is derived;

e in the second part is discussed the new measurement model, which is
slight modification of the measurement model considered by the MEM-
EKF* filter;

e in the final part are derived the equations of the LO-MEM predictor
and corrector, then the PHD extension is discussed.

9.2 Lambda:Omicron motion model

9.2.1 Motivation

The two extended object trackers, i.e. the GIW filter and the MEM-EKF*
filter, share the fact that the estimation process of the object shape depends
on the estimate of the object center. In fact,

165
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e for the GIW filter, the corrected shape matrix X k| can be written as

PO (T = Grie—1) (@ — Tep—1)' S, ' +Y
lk l/k\k - 2p -2

(9.1)

which depends on g x—1 = Cpjp—1, i.e. the predicted estimation of
the object center;

o for the MEM-EKF* filter, the corrected shape vector py;, is computed
according the following BLUE equation

; i—1 _ ; ; i i—1
pgﬁkﬂ = p§c|k7)1 + ErYzylF [(yl(;) - y;(gl\)k,l) ® (y;i) - y;(cﬁk,)l) - Zy]

(9.2)

i)l =H rl(f‘gi)l, that is the predicted estimate of

which depends on géj;

the object center.

If the object center is poorly estimated then, for both filters, the shape of
the object cannot be estimated with accuracy. As a consequence, a key issue
is the estimation of the object kinematic state because on it both localization
accuracy and shape estimation depend crucially.

The GIW and the MEM-EKF* filters assume a linear motion model for
the kinematic state, which implies that the tracked object moves along a
line. Clearly this is a limiting factor from the point of view of the kinematic
state estimation, because in general the trajectory of an object, represented
by the trajectory of its center, can be curved.

Idea

The Lambda:Omicron model is a new type of motion model designed for the
MEM-EKF* filter that, in order to increase the accuracy of the predictions
of the kinematic state (which, as just explained, reflects also in a better
estimation of the object shape), tries to represent curved trajectories.

In order to do that, the starting point is the so-called unicycle motion
model

Vg1 = Vg + Wk (9.3)
Ori1 =0+ Twy + wo i
WEt1 = W + Wy k

where:

e m = [£ n]’ is the object position expressed in Cartesian coordinates;
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e v = ||r|| is magnitude of the velocity vector n;
e 0 =tan~!(n/¢) is the angle of the velocity vector ri;
e w = 0 is the time-derivative of the velocity vector angle 6.

This model can be cast in the extended object tracking problem by assuming
that 0 is the orientation angle of object or, in other words, that the extended
object can only move along its longitudinal direction (lateral movements
are not considered by the unicycle model). A limitation of the unicycle
model is that, unlike a linear kinematic model, the model state is fixed to
r 2 [m’ v  w]'. The Lambda:Omicron model tries to solve this limitation
by including in the model higher order derivatives of v and w.

9.2.2 Drawback

The major drawback of the Lambda:Omicron model is that, likewise the
unicycle model, it cannot represents lateral motions. This is a clear limita-
tion because, in general, it is not true that an object moves only along its
longitudinal direction.

For example, consider a boat that moves from an edge of a river to the
other one. Due to the flow of the river, the velocity of the boat is not
perfectly aligned to the boat heading direction.

Despite this negative fact, in some contexts the assumption that the
velocity vector is aligned to the object orientation is reasonable or at least a
good first order approximation.

9.2.3 Nomenclature

The name Lambda:Omicron, which is directly inspired by the name Alpha-
Beta filter used to refer a special stationary Kalman filter, arises from the
fact that, as will be shown (see section 1.2.6), the new motion model consists
of two independent parts:

¢ Lambda model: describes the dynamics of the longitudinal speed
v 2 || (9.4)

where m is the object position, and its first A — 1 derivatives v, ...,
v Here A > 0 is a design parameter called linear order. If only
this part is considered (for convention O = 0, where O is defined in
Omicron part) then the trajectory is a line. Hence the name ” Lambda”
recalls this fact by abbreviating the word ”line”. For A = 0, the model
represents a stationary trajectory (the object does not move);
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e Omicron model: describes the dynamics of the steering speed
w26 (9.5)

where 6 is the orientation of the object, and its first O — 1 derivatives
W, ..., w9, Here O > 0 is a design parameter, which can be
chosen independently from A, called angular order. If A = 1, then
the trajectory is a circle. Here the name ”Omicron” recalls this fact
because the letter Omicron resembles the shape of a circle. For O = 0,
the model represents a rectilinear trajectory (the object moves on a
straight line).

9.2.4 Examples of Lambda:Omicron motion models

Naturally, each choice of A and O gives rise to a different type of motion
model. The simplest examples of Lambda:Omicron models are the following:

e 0:0 motion model: represents the trajectory of a completely station-
ary object which does not change its position or orientation. Clearly,
this is not an useful model for a tracking problem:;

¢ 0:1 motion model: this model represents the trajectory of a station-
ary object which does not change its position but changes its orien-
tation with a constant turning rate. Once again, this is not a useful
model for a tracking problem;

e 1:0 motion model: this is the simplest useful model and represents
a uniform rectilinear motion. This model is suitable if it is known that
the object moves along a line with a constant speed;

e 1:1 motion model: represents a uniform circular motion. This model
is suitable if it is known that the object moves on a circle with a
constant speed. It turns out that the 1:1 motion model is nothing but
more the well-known unicycle motion model;

e 2:0 motion model: represents a rectilinear uniformly accelerated
motion. This model is suitable if it is known that the object moves on
a line with a constant acceleration;

e 2:1 motion model: this model is suitable if it is known that the object
moves on a cirlce with a constant acceleration and steering speed. This
is the simplest model that can represent a trajectory with non-constant
curvature.
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9.2.5 1:0 motion model
Vanilla 1:0 motion model

Consider the following NCV motion model, where the center of the object is
A / . . .
m = [£ 1]’ and the sampling interval is T,

€1 =&+ T ) + wes
M1 =M T TN+ wni
Erpi1 =& twgy,

M1 = Mg T Wik

(9.6)

By expressing the velocity vector rin = [5 7]’ in polar coordinates v, 8, i.e.
by using the change of variables

£=vcosh 9.7)
N =wvsinf '

where it is assumed that the velocity vector m is aligned with the orientation
of the object, so that 0 represents the orientation angle, the NCV equations
can be written in the following compact form
= T (v, 0
Mpy1 =y + Tf7 (v, Or) + Wik
Vg4+1 = Vg + Wy (9-8)
0111 = 01 + wy i

where it is introduced the nonlinear function

cos 0
fﬁl)(vﬁ) = [sin 0] v

(9.9)
These Equations define the 1:0 motion model and
e the first two equations in m and v define the first order lambda model;

e the third equation in @ defines the zero order omicron model.

Augmented 1:0 motion model

At this point, in order to integrate the 1:0 model with the formalism of the

MEM-EKF* filter, the model is augmented with the two following additional

motion equations for the lenght I; and width I of the object
g =l +w i

(9.10)
lopt1 =l +wi, i
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by introducing the kinematic state » = [m’ v])’ and the shape state p =
[0 11 15]', the model can be written more coincisely as

Tit1 = fr(Th, D) + Wr ik

9.11
Piy1 = P T Wpk ®-11)
where "
1
for,p) 2 | (”’9)] . (9.12)
v

Note that, unlike the MEM-EKF* motion model, which treats » and p sep-
arately, now the first equation depends on p, so r and p are coupled. In
order to treat r and p jointly, it is convenient to define the state of the ex-
tended object as & = [’ p']’, so that the final expression of the augmented
1:0 motion model is

Tyl = f(.’Bk) + wy, (9.13)
where the global transition function is
flx) & [f’"(;’p)} (9.14)

9.2.6 2:1 motion model
Vanilla 2:1 motion model

Consider the following NCA motion model,
. T2 .
Srp1 =& + T8+ 5 & T Wek
T2
Merr =M TN+ o e T Wk

€k+1 =&, +T&, + w; . (9.15)
MNgr1 = Mg + T 7y + Wi e
Erpy1 =& twg
Mpy1 = M + Wik
by expressing the velocity vector iz £ [£ 7n7]" in polar coordinates v, 8, where

as the previous case it is assumed that the velocity vector m is aligned to
the object orientation, follows that

€ = v cos 0 + vw(—sin )

9.16
7 = ¥sin @ + vw cos O ( )
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where it is introduced the longitudinal acceleration v and the steering speed

w, defined as

v = d—v ws %
dt dt
Sampling these equations according to the sampling interval 7' and assuming
that w and ¥ are stationary up to small zero-mean Gaussian fluctuations

W, k, Wy k, the following equations are obtained

(9.17)

Vi1 = Vg + TO + Wy i,

Vi1 = VD + Wi

(9.18)
011 =0, +Twip1 + wo i
Wil = Wg + Wy k
consequently,
T2
€ri1 =&p +Tvpcosb + -5 [V cos O, + vrwp(—sin Oy)] + we i
T2
N1 = M + T vy, sin Oy, + 7 [’i)k sin 0y, + viwy cos gk} + wy k
V1 = U +T0p +wy i (9.19)

V1 = U + We
Ori1 =0, +Twy +wp i

Wil = Wg + Wy i

which can be expressed coincisely as

T2
s = m + T s 00) + = (17 s 00) + 12 s 1,00 ) + win e

Ak = A, +wy
0r11 =0 +Twy + wo i,

Wil = Wi + Wy i

(9.20)
where
A2 m Ay 2 Toep (1,T) (9.21)
and the nonlinear functions
(1) A |cos@ 2 a |cos@| . @) A |—sin®
f” (A.0) = {sme} f” (A.0) = Lin@] 1w, 0) = [cos@
(9.22)

These equations are the 2:1 model and

vw
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e the first two equations in m and A define, according to, the second
order lambda model,

e the last two equations in @ and w define the first order omicron model.

Augmented 2:1 motion model

Now, by including in the model the radii equations and by defining the
kinematic state r £ [m’ X’ w]’ and the shape state p £ [0 11 l]', follows
that the augmented 2:1 model can be written as

Ter1 = fr(Tr, D) + Wk

(9.23)
Piy1 = D + Aprrk + Wy, k
where
Oixa T m+ T 0+ 5 (F7 (0 0)+ [P (X w,0))
Apr é 01><4 0 fr(rvp) é AAA
O1x4 O w
(9.24)

Finally, in terms of the global state £ [r’ p']’, the augmented 2:1 motion
model assumes the form

Tyl = f(il:k) + wy (9.25)
where the global transition function is
A f’r‘ (T,p)
fw 2 | IO (9.26)

9.2.7 General Lambda:Omicron motion model
Vanilla N:N — 1 motion model

Consider the following linear kinematic model of order N + 1, where N > 0
is a design parameter, for the center m = [€ n)’ of the object,

M1 = At + Wik (9.27)
where
m 2 [m/ . (m(N))/]’ A,} 2 Toep (N’ T) ® Iy (9.28)

by introducing the polar change of variables (with the usual assumption that
the velocity vector m is alligned to the angle orientation)

rin = [ (v, ) (9.29)
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and by expressing also 77, 71, ..., mY) in terms of the new variables
/
£ [v v v(AéN)}
. , (9.30)
= {w w .. w(O:N*I)}

via the relations

AV (.0) "1V (v.6)
m-= ——— e | R

o M) 9.31
dt " N (9:31)
it turns out, by assuming the model
)‘k-‘rl = A\, + wy k Ay £ Toep(A S N, T) (9 32)
Ok+1 = Ao0 + W i; Ay 2 Toep(O £ N —1,T) '
that equation is equivalent to
N i
My =My + jf(z) (Aks 0k, 01) + Win i
i=1
)\k-i-l = A\, + Wk (9'33)
0141 = 0 + Ago0, + wo i,
opy1 = Ao + wo i
where N
Ago = ' OAN-1,T
‘ Qi1 . (9.34)
F%0.0) & TV (0.0)  i=12..N

Observation 2. The generic nonlinear function f(*)(-) can always be de-
composed in the following form

FO(X0,0) = f" (X 0,0) + [’ (A, 0,0) (9.35)
where, for suitable scalars k‘(ll)() and k‘ﬂf)(-) depending on A and o,

—sin@s

Il cos @

i cos @
17 (x0.6) = [sin 0]

K'vo) (A 0,0) = [ ]k@u,o).

(9.36)
A simple induction shows that the decomposition holds for any i. The base
of the induction is expressed, for example, by the 2:1 model where f), f(2)
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are explicitly computed and then decomposed in fﬁl), J(_l) and fﬁz), fJ(_Z). To
show the induction step, suppose that the decomposition holds for a generic
i and compute f0*1 as follows

. df® d [[cos@| d |[[—sin8| @
(i+1) & & O (@)
e 2 S = o] ]+ | o] ]

dt  dt ||sin@ cos 0
_ |cos@| ) (i) —sin6 () | ()
= [sina} (k)7 —wk )+ s | (@R +EL) (9.37)
N——— N————
ék‘(lwn 2D
254D O

Note that the decomposition still holds also for ¢ = 1 by considering the
convention

1 —sin@ 1
(X 0,0) 205 = [ cosh } K (9.38)
£0

According to the decomposition, it turns out that

N .
T 7.6 i
Mpp1 =me+ Y o {fﬁ '(Ak, 01, 01) + fi)(Ak,Ok,Ok)] + Wi
i=1

Ak = AxAp +wy (9-39)
0141 = 01 + Apoor, + wo i

Op 41 = A0k + Wo i
which is the N:N — 1 model and

e the first two equations in m and A define the lambda model of order
A& N,

e the last two equations in @ and w define the omicron model of order
O&N-1.

In some scenarios one can be interested in more accurate estimation of
A rather than o (or viceversa). In this case (or the other one), the quality
of the estimate of A (0) can be improved by increasing A (O). However, the
N : N — 1 model does not allow the designer to increase the linear order A
(angular order O) without increasing also the angular order O (linear order

A).
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In order to overcome this limitation, the general Lambda:Omicron model
generalizes the N : N — 1 motion model in a way such that A and O can be
potentially chosen without satisfying the constraint A = O+1. On the other
hand, the major flexibility of the generalized model is paid with the price
of not having a direct correspondence with a familiar motion model such as
the generic linear kinematic motion model.

Vanilla Lambda:Omicron motion model

Given two generic orders A, O, let
N 2 max(A,0 — 1) (9.40)
and observe the following fact:
e case A = O — 1: trivially, N = A and the N : N — 1 model holds;
e case A > O — 1: in this case N = A and by defining
02 [0 Oixa—o-1] (9.41)

the N : N — 1 model applys with the following convention

Mpy1 = karZ [f”Z Akyokaek)+f ()\kabkyek)}+wm,k

Akl = A + Wi
Ory1 =0 + Agoor, + wo i
Op11 = Agop +wo i,
(9.42)

e case A < O — 1: in this case N = O — 1 and by defining

A2 [N Oixo-at] (9.43)

the N : N — 1 model applys with the following convention

Myy1 = My, +Z [fl\ (Ak, 0k, 02) + f1' ()\k,Ok,Hk)} + wn,

Akt1 = AxAg + wy
Or11 =01 + Ago01, + wy

Opy1 = Ao + wo i
(9.44)
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The (general) Lambda:Omicron model, which applys in all three cases,
is the following

max(A,0—1) Ti ‘ A
My = my + z; o [fﬁl)()\k, o1, 1) + 11 (Ar, o, ‘91@)} + W i
=

kg1 = A, +wy i
01141 = 01 + Ago0r, + wo i
Op+1 = A0 + W, i
~ (9.45)
where are defined the padded lambda vector A and the padded omicron

vector o as ,

= [A/ lemax(OfAJrl,O)]

>
ES
Il

(9.46)

2
[>

I
/
(0" O1xmax(A—0-1,0)]
In conclusion,

e the first two equations are the general Lambda model of order A;

e the last two equations are the general Omicron model of order O.

Augmented Lambda:Omicron motion model

By including in the Lambda:Omicron model the radii equations and by defin-
~/

ing the kinematic state 7 = [m’ XA &')" and the shape state p = [0 1, l5]’,

turns out the augmented model

Tiy1 = fr(Tr, Dr) + Wr ik

(9.47)
Pry1 = Pg + Apr"'k + wy i
where
[Oreen s [me o g (17X 0.0) + 1(2,6,0))
Apr = |01x2a O1x0 fr(r,p) = A
O1x2a  O1x0 Ayo
(9.48)

now, by defining the global state = [’ p']’ follows the compact expression

Ti1 = f(@r) + wi (9.49)

where the transition function is

flx) = [pf +(1:45 )r} (9.50)
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9.3 Measurement model

9.3.1 Motivations

The MEM-EKF* filter considers as measurement model the couple given by
the MEM and the pseudo-measurement model. One characteristic of the
correction law is that, given the sample of measurements

ye 2 gty (9.51)

the filtered estimates are computed by processing sequentially the n; mea-
surements in the sample. As a result, the MEM-EKF* at each sampling step
k performs nj, single-measurement corrections (which consists in a kinematic
correction based directly on the measure y and in a shape correction based
on the pseudo-measurement Y relative to y).

The LO-MEM filter uses the same measurement model of the MEM-
EKF* filter to represent the measurements and the pseudo-measurements
but, in order to obtain a corrector with low computational burden, tries to
simplify the sequential strategy by replacing it with a single-shot strategy.

idea

Instead to consider the available measurements independently, the correc-
tion is performed, by using the BLUE equations, according to the mean
measurement and the mean pseudo—measurementﬂ defined respectively as

U = — ' Ve 2—Y v, 52

This idea is inspired to the correction strategy used by the GIW filter,
which choose to process the mean measure 3 and the scatter matrix Y rather
than the single measurements individually.

As aresult, at each time step k the LO-MEM filter performs only one sin-
gle measurement correction (which consists in a kinematic correction based
directly on the mean measure 4 and in a shape correction based on the mean
pseudo-measurement Y ). In other terms, the LO-MEM corrector is char-
acterized by a constant computational cost, while the MEM-EKF* requires
a computational cost that grows with the number n; of available measure-
ments.

Lthe normalizing factor is nj — 1 rather than ny due the so-called Bessel correction,
which improves the estimation process (as will be shown in section*)
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9.3.2 Drawback

It should be noted that, despite the clear advantage of the low computation
cost, the LO-MEM corrector is less accurate than the MEM-EKF* because

in general the transformations
(@) (ORI
ey —
y(’?) e Y (9.53)
VARIINIS ACRES

implies an inevitable loss of information.

9.3.3 Mean MEM

The MEM, according to the definition of the kinematic state used by the
Lambda:Omicron model, assumes the form

Yy, = H,.rp + S(pk)hk' + Vg (9.54)
where the obsevation matrix H, is defined as
H, 2 [l Oy 0O2xn] (9.55)

now, by observing that in the sample each measurement, since are originated
by the same object, shares the same kinematic state r; and the same shape
state p;,, the mean MEM is given by

Yy

1>

1 & i i
- Z (Hrrk. + S(pk)h,(c) + vé))
=t (9.56)

ny

= H.ri+ nik Z (S(pk)hff) + vg))

i=1

9.3.4 Mean MEM distribution

In order to apply the BLUE equations, the moments gjr—1, Xg, Yoy are
required. In this section the entire distribution pg(-) of g, is derived and
consequently the three moments Jix—1, Ly, ey are extracted from py(-).

Distribution
By considering the following moment-matched Gaussian approximationsﬂ

hk ~ N(Oa Rh)

X i 9.57
i~ N(Frp—1, Pyj—1) (3:57)

2by definition, the multiplicative error hj is not Gaussian, while the kinematic state
71 is not Gaussian due to the non-linearity of the Lambda:Omicron motion model
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and by assuming that the covariance P,f‘ w1 of py is sufficiently small to

justify the following additional moment-matched Gaussian approximatiorﬁ
S(p)hi, ~ N(0,CT + C'T) (9.58)

follows, for the elementary sum rule for Gaussian distributions, that the
mean MEM measurement 4,, is approximately distributed like

+c! +c + R,

ng

Py, (k) EN (yk; H g, Hy Py Hy + ) (9.59)

Moments

According to pyg, (), the prediction g ,—1 of ¥, and its covariance Xy are
respectively
Yrlk—1 = HoPppp_1
¢l +c+R, (9.60)
ng

Sy 2 Ho Pl H.+

the cross-covariance ¥zg can be computed via the definition

Yoy = E[Z1Y)] (9.61)

where

N . T —Tk| & |[Thlk—1
R

Pr — Pk Drjk—1 (0.62)
= - - ~ 1 & i i ’
Up 2 Up — o1 = Hop + P Z (S(pk)h,(c) + v?)
i=1
its easy to see that
P, H!
klk—1""r
e [ o

where it is introduced the global observation matrix

H2[H Oyanyor)] (9.64)

3the idea behind this approximation is that, if Py, is deterministic, i.e. Plf\k—l =0

and py = Py|r—1, then, according to the Gaussian approximation for hj, the distribution
of S(pk—1)hi is trivially N(0, S(Byx—1)RrS(Brk—1)") = N(0,CT). In order to take

into account the (assumed to be small) covariance P? = 0, the second factor CT! is

k|k—1
included in the final approximation for the distribution of S(py )k
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9.3.5 Mean pseudo-measurement model

Likewise in the previous section, the distribution py-(-) and the moments
Yiw—1, Xy, X,¥ associated to the mean pseudo-measurement Y are de-
rived in what follows in order to apply the BLUE equations.

Preliminary discussion

According to its definition, the mean pseudo-measurement Y, can be written
in the following form
Y. = Fvec[Scov] (9.65)

where Sy is the so-called sample covariance, defined as

U2

1 D - D
Secov = - > - v - o) (9.66)
i=1
in fact,
1 oy
Y. 2 —NvY
LSS pify (@)
T —1 ZF[(yk —Yr) @Yy — Uil
1 - (9.67)
_ (1) = (3) =\
T onn—1 Z;Fvec [(yk — U)Wy — Yi) }
n
= Fvec nn—1 Z(?J/(;) - Z_/k)('y;(j) - ?71@)/] 2 Fvec[Scov]
i=1

In the Gaussian case holds the following famous result regarding the
sample covariance

Theorem 16. Let {y(i)}?zl be a sample of n IID p-variate measurements
distributed according to

YD~ Ny, Sy >0)  i=1,2,...,n (9.68)

then

41
T n

e the sample mean y S, y@ follows the Gaussian distribution

Py(y) = N(U; iy, 3y) (9.69)
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o the sample covariance Scoy = -5 Z?:kl(y,(f) - ’!_Jk)(yz(f) —17,,)" follows
the Wishart distribution

by
pscov(SCOV) =W, (Scov§n -1 Y ) (9.70)

"n—1

e the sample mean y and the sample covariance S, are independently
distributed.

Distribution

In the MEM case, the sample is (approximately) Gaussian but not IID be-
cause each measurement shares the factor H,r, which correlates the mea-
surements to each other. Despite this negative fact, the same factor H,r is
also present in the sample mean and the correlation effect partially cancels
out. Hence thereom applys approximately to the actual case.
Since between the sample covariance S, and the mean pseudo-measurement

Y there is a 1-to-1 relationship (which says that Y is nothing but more than
the vectorial representation of S¢oy), follows that the distribution of Y is
the same as the distribution of S..., so the distribution of the mean pseudo-
measurement is approximately given by

7y A Y1 Ys|. o o By
py(Y) =W, (SCOV =y, Yz} in — 1, — (9.71)

where Y = [V Y, V3],

Moments

According to the distribution py-(-) and the formulae for the Wishart mo-
ments, the moments Y ,_; and Yy are respectivel

?k\k—l = FVGC[E[SCOV]]

= Fvec [(nk - 1)%23 J (9.72)

= Fvec[¥y)]

4The Bessel correction simplifies the expression of the prediction ?klkfl- By con-
sidering the true mean pseudo-measurement iz;;kl Yk(i)7 the prediction would be

"Zigvaec[Zy} (instead of the simpler Fvec[Ey])
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and
E? = Cov[FveC[Scov”
= F(Cov|vec[Scov]]) F’
=F ((nk _1)(I4+K) ( zy ® Ey >> F/ (973)

nkfl le-fl
L+ K
nk—l

(Ey® Zy)> F’

where K is the commutation matrix given.
In order to computate of the cross-covariance, start by observing that for
linearity

1 ok Nk
Y = Yy = % 9.74
zY ne — 1 ; =Y ne — 1 @Y ( )

now, the cross-covariance between & and Y can be computed approximately

as ,
. dg -
LTk|k—1

by assuming that the Jacobian £ is independent from & and by observing
that

ZmeE

ag - 9g dg o
" ox ikk1‘| N [E [W f'k\kfl} E [% ﬁk|k—1:|:| - [02X2 Mﬁ] (9.76)
A M,
follows the final expression
ni !
Yoy = Prjk—1 (nk — 1M:E> (9.77)

9.4 LO-MEM predictor

9.4.1 Extended Kalman predictor

The Lambda:Omicron motion model is not linear. The LO-MEM predictor
is thus defined as the following EKF predictor

Tri1e = (2rr)

A (9.78)
Pk = JoPrpd, +Q
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where

N of(x)
Jo = ox

(9.79)

Tr)k
the main problem, addressed in the next section, is to find the explicit ex-

pression of the motion Jacobian .J, £ %(;)

9.4.2 Motion Jacobian

Start from the Jacobians of the non linear functions fﬁi) and ff), which are
defined by

i) i

S0 s 007w s 0f)

T AT

i) i
RODEI TN )% (9.80)

A M

(4) i

S0 007w s of)

ol do 0 do

then the equation in m is linearized near #y;, as follow

%

N
T
25

N .
T /a6 NO
i=1

(79 + .fy‘j)] Re o)

i=1
YN
T (0 0 ST ) )
+ 1> T (Joﬁ + Jol)] (6 — Ory) + | - (JGTI + Jel)] (01 — ki) + W,
i=1 i—1
a7, Y
(9.81)
where
720G T2 1D Gage) (9.82)
and
(4) ;
J 2 95" @) & of
TN 90 |,,,
R (0
el gme o) 059
oA gk dA Epk
(4) ;
j(ﬁ) a ﬂ JjO 2 af?
o 0o Ehlk do Falk
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Consequently,
Tk+1 :fr+jr(rk _rk\k)+jrp(pk _pk\k)""wr (9 84)
Piy1 = P+ Apr(Th — 1) + wp
where fr £ fr(fk|kvﬁk|k) and
X I I Jo X Jo O2x1 O2x1
Jr & |O0axz Ay Oaxo Jrp 2 [0ax1 Oax1 Oaxi
Oox2 Ooxa Ao |, 0ox1 Oox1 Ooxi],
|k k|k
(9.85)
In conclusion, the linearized form of the Lambda:Omicron model is
Tyl = f(fk“g) + jT(CCk — ik\k) +w (986)
where J, = J, (%x) and the searched motion Jacobian is
B L
Jp = |:Ap7‘ Ig] (9.87)

9.4.3 Basic factors and Jacobians

Due to the their implicit definitions, explicit formulae for the motion function
f(-) and for the motion Jacobian J, are not yet found. In this section
this problem is solved by employing the results expressed by the special
decomposition of the motion functions.

Basic factors

The motion function f(-) requires the explicit expressions of the scalars k:‘(li)

and k(j), here called basic factors. A practical way compute such factors is
by using the recursion

(i+1) _ ;.09 (@)
kH = kH —wk}

, o (9.88)
Y = wkl?) + kY

initialized with
KU 20 kP20 (9.89)
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Basic Jacobians

The motion Jacobian J, requires the explicit expressions of the Jacobians.
Such Jacobians can be computed via the following practical formulae

(i — sin Oy i (i cos 0, i
30 _ { z«|k] RO ON [ kuc} (=)

ol | cosb |l N A
~(i) _ | Co8 Ok | () sy [—sinby] @)
J)\” o |:Sin Gk“J jM| JAJ_ - |: cos ek\k Ial- (990)

G _ cos Ok | (i) 5(i) _ —sin Ok | +3i)
oll sin@k‘k of ol COSQk‘k ol

where are introduced the basic Jacobians

(2) i
2@ a kx| +5) & OKY)
AT Taa LT THx
Ak |k 1Ok k Ak|k1Ok|k (9 91)
(4) i ’
20 a o 0 2 Oky')
°l do Ak |k Ok|& ’ do Ak|k1Ok|k
Explicit expressions
e initialisation 7 = 1: basic factors
K 2 v (9.92)
KD 20
basic Jacobians
(1) &
Jx =1
(1) &
T =0 (9.93)
(1) &
Jix=0
Jis =0
e case 1 = 2: basic factors
kP 20
(9.94)

= Wv
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basic Jacobians

(2) &
J)x =00 1]
.(2) A
720
g !2) (9.95)
Jix = [wklk 0}
(2) &
J156 = Vk|k
e case i = 3: basic factors
kﬁg) 25— w
(9.96)
k) 2 20 + i
basic Jacobians
(3
jﬁj\) é |:7w1%|k' 0 1:|
(3) &
‘7”5 ﬁ [_ka‘kvklk 0] (997)
P32 o 2w 0]
302 (200 vipe]
e case i = 4: basic factors
k:\(|4) £ 0 — 3wiv — 3w
kY = 3wi + 3wy + v — wv
basic Jacobians
jﬁ? 2 | “Bwppdnr —3wdy 0 1}
jﬁ? £ [ =3k kil — 6wWiikOkik —3wkkUkk 0]
(4 a [- 3 ) (9.99)
Ji5 = |Dkle = Wi 3@k 3Wk\k’}
J'(frz 2 3ﬁk|k*3wi|k”k\k 30k |k Uk|k:|

9.5 LO-MEM corrector

At each time step k + 1, the LO-MEM corrector consists in the following
BLUE operations

Th1jo+1 = Tk + Em372§1 (Vrt1 = Visijr) (9.100)
Prt1jk+1 = Pryje — Emy2§12;§ ’
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where the considered observation is
_ ot
y 2 [g’ y’} (9.101)

and the relative moments are computed, according to the mean MEM and
the mean pseudo-measurement model, as follows

e prediction: the prediction fkﬂ‘ & has the following structure

_ B _, /
Viyie = |:y/]q;+1‘k Yk+1|k} (9.102)

e covariance: the covariance ¥5; has the following structure

_ E@ EQ?:O
Ey = [ ] - } (9.103)

The mixed term Eg? is zero because ¥ and Y are independently dis-
tributed;

e cross-covariance: the cross-covariance X_5; has the following struc-
ture

Yoy = [Yey Loyl (9.104)

9.6 PHD implementation

Since the LO-MEM filter considers a non-linear motion model and a non-
linear measurement model, both the PHD predictor and corrector are defined
heuristically. The idea is to embed the estimates generated by the LO-MEM
filter in the Gaussian mixture defined by the GM-PHD filter.

9.6.1 Predictor

The state of a generic extended object is defined as
z £ [r P (9.105)
and the considered predicted PHD is

Dk|k—1($) = DB(.’ﬂ) + Dg ($) (9106)
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where the new born objects PHD Dg(-) is

Dg(z) = ZwB N (x; 2B, Pg.i) (9.107)

i=1
while the survived objects Dg(+), assuming pg constant, is given by

Vg—1|k—1

Ds(z) = Z W\k—1,i N (T3 Trjk—1,i Prjk—1,s)
=1

Wk|k—1,i = ps Wk—1|k—1,i (9.108)

Tpo—1,i = f(To-1jo-1,i)

Pi—ijp—ri 2 JoPeoijpe1,idy + Q

where f(-) is the Lambda:Omicron motion function and .J, is its Jacobian
evaluated in & _1x_1,

9.6.2 Corrector

The considered corrected PHD is

Dyyi(z) = Dnp(z) + > Y Dp(x; P, w) (9.109)
PBy weP

where

e assuming pp and Ap constant, the non-detected objects PHD Dnp(-)
is
Vk|k—1
Dnp(x) = ; W, N (T3 Thpo—1,55 Prjl—1,i) (9.110)

Wik, = [1— (1 — exp(—Ap)) pp] Wijk—1,i
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e the detected objects PHD Dp(+;P,w) is given by

Vk|k—1
P,w,i LW, W, %
Dp(z;P,w) = Z Wy N(x,a:k‘;,Pklk)
=1
. i
P.w,i A W,
Wy = WP o,
_ A\ ¥
Cw.i £ ppexp(—Ap) <1c> L.i (9.111)
Vi|k—1
do £ 61 (W)+ D lus
=1
A HWEPdW

wp =
Z'PEy HWG'P dW

where the cell likelihood and the corrected parameters are defined as
follows.

Cell likelihood
The cell likelihood is defined according to the model of the joint vector
ye [g’ ?’}/ (9.112)
now consider the following facts:
e the model for g is
Pyli(¥) = N U1, ) (9.113)
where, according to the mean MEM moments,

U1 = Hgpo1
CI,i +CII,2' +Rv (9114)
[wl

»i A gprt

!
¥ pik—1H +

and 7gk—1,, P;:[pr CT#, CT' are moments relative to the predicted
object i. This model is reasonable if the covariance of py;,_; ; is small:
in this case y is, with a good approximation, Gaussian;

e the model for Y is

— A 2;
py(Y) = We (Y; w| =1, = 1) (9.115)
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where, according to the pseudo-measurement model,

Zi — HPT‘,i

3 vk H O O R, (9.116)

then, by exploiting the fact that 4 and Y are independently distributed (due
to theorem (?77)), the cell likelihood gets the explicit expression

Lyi® P§|Z(y) = pg|i(37)p?|i(?) (9.117)
= N(@; U1, Zp)Wa (Vs [w| — 1,53

Corrected parameters

The |P| ‘Vg|k—1 corrected parameters x‘,’c"",i, P,:V‘ k’ are computed by an ensamble
of |P| - vjp—1 LO-MEM filters, where each filter performs the correction of
the predicted object ¢, which is characterized by the predicted parameters

W, W, % .
Thlk—1s Pk|k71’ according to the cell of measurements w.
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Chapter 10

Simulations

10.1 Summary

In this final chapter are shown the numerical results about two different
simulations modelling a naval tracking problem where different boats moves
in fixed sourveilled area (which is a square of [~1500, 1500]? meters).

e simulation 1: in this simulation is considered a single boat that per-
forms an highly manuevering trajectory in the sourveilled area. The
trajectory is characterized by relevant variations of longitudinal speed
and steering speed;

e simulation 2: in this simulation are considered five different boats
that moves around the sourveilled area. In this simulation the number
of boats simultaneously present in the scene is a time varying quantity
because the boats can enter or leave the sourvelleid area.

In the first simulation are compared the LO-MEM filter, in its version
2:1-MEM, with the MEM-EKF* filter, in its version CT-NCV. In particular,
it is shown that the LO-MEM filter can achieve better performance than the
MEM-EKF* filter. In the second simulation is shown the effectiveness of the
PHD extesion of the LO-MEM filter in a multiobject scenario.

The GIW filter is not considered because it was already prooved that the
MEM-EKF* filter achieves better performance.

The interessed reader can find the source code, written in MATLAB, on
the GitHub page of the author.
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10.2 Simulation 1

10.2.1 Ground truth

motion equations

The trajectory of the tracked boat is given by the unicycle model

cos
k:| w?

Megy1 =mg +T [sin 0, | U

(10.1)
Op+1 = O +Tuy,

where u¥ and u“, seen as driving inputs, are the longitudinal velocity and
the steering speed of the boat. In order to define smooth «’ and u® in a
simple manner, it is considered the following two additional equations

gy = uj + Tug (10.2)
Wy = uf + Tuf

which allows to define u¥ and u* in terms of integrals of the longitudinal
acceleration u” and the of the steering acceleration u®.

initial state

The initial kinematic state considered is the following

mo £ [-562.5 —562.5]  (in meters)

o2 = in radiants

=g | ) (10.3)
vo = 24 (in kilonodes / seconds)
wo =0 (in radiants / seconds)

the dimensions (width and lenght) of the boat are respectively

(>

L

Iy £ 10 (in meters)

100 (in meters) (10.4)

input signals

The sampling interval considered is T' = 1 second and the length of the
simulation is 180 seconds. The driving inputs u}é and u‘,j are defined as the
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Figure 10.1: Ground truth trajectory. At the ending point is shown the
ground truth ellipse representing the tracked boat.

following piece-wise constant signals

u

[
k

v A

0.1
0
0.1

if
if
if
if

0<k<60

60 <k <75
75 <k <95

(in kilonodes / seconds?) (10.5)

95 <k < 180

if
if
if
if
if

0<k<60
60 <k <75
7 <k<95
95 <k <125
125 < k < 180

(in radiants / seconds?)  (10.6)
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measurement generation

The measurement equation employed is the MEM equation
) = mi + S(pi)hy) + o))

WD~ U(Coy) (10.7)

ol ~ N(0,R,)

where mj, and p; are the position and shape state of the tracked boat.

At each sampling instant k are generated 5 different measurements by

generating stochasticly 5 different multiplicative noises and measurement

noises {h{"”, v{"}2_,.

The choosen measurement covariance is

R, £ diag(15%,15%)  (in meters?) (10.8)

At each sampling instant £ no clutter measurements are generated.

10.2.2 PHD MEM-EKF* setup
PHD setup

Since in the actual simulation there is only one object that does not leave
the scene and since are not modelled blind spots in the sourveilled area, the
considered PHD parameters are the following

pE1l ps=1 (10.9)

Since no additional objects enter in the scene during the simulation, the
new born object mixture is neglected.

Due to the fact that no clutter measurements are generated, it is consid-
ered

Ac 20 (10.10)
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MEM-EKF* setup

The filter is initialized with a mixture composed by only one component,
which is characterized by the following parameters

wojo £ 1
(& ] [—700]
o 700
$o 0
) ' 0
Zojo = Z‘; £, (10.11)
o 5
i 50
i 25
L42,0 - -

Pojo £ diag (1000, 1000, 100, 100, 0.01, 0.01, 200, 100)
the considered process noise covariance is

Q 2 diag (100, 100, 0.01,0.01, 0.00005, 0, 0.000001, 0.00000001)  (10.12)

10.2.3 PHD LO-MEM setup

PHD setup
See the PHD setup of the previous PHD-MEM-EKF* filter.

LO-MEM setup

The filter is initialized with a mixture composed by only one component,
which is characterized by the following parameters

wopp = 1
éo (700
7o —1700
0o 0
) b 0
oo = wg £l (10.13)
ol |3
{1,0 50
bo| L 25

Pyjo £ diag (1000, 1000, 100, 100,0.01,0.01, 200, 100)
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375 -
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Figure 10.2: Initial condition. The grey ellipse represents the ground truth,
the blue ellipse represents the initialization of the MEM-EKF* filter, the red
ellipse represents the initialization of the 2:1-MEM filter

the considered process noise covariance is

Q = diag (0,0,0.01,0.005,0.00005, 0,0.000001, 0.00000001) (10.14)

10.2.4 Error metric

At each sampling instant k, the performances of the two filters are measured
with the so-called Wasserstein distance between the ground truth ellipse and
the estimated ellipses generated by the filters.

The Wasserstein distance is a metric that measures the difference between
two ellipses E1 = (mq,%1), E2 = (mg,s), where my, mo are the centers
and X1, Yo are the shape matrix of the ellipses.

750
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The square of the Wasserstein distance, which is measured in meters?, is
defined as

W2(E1, EQ) £ ||m1 - m2||2 + tr |:21 + 3o — 24/ V2122V 21:| (1015)

where v/3; is a matrix such that v/3,v/S; = 21. The first term [[mq — mg]?
takes into account the position error between the two ellipses, the second
term tr[ - -] takes into account the misalignement and the differences in the
extensions of the two ellipses.

Let Eg i, EvEM-EKF* ks ELo-MEM,: be the ground truth ellipse, the es-
timated ellipse by the MEM-EKF* filter and the estimated ellipse by the
LO-MEM filter at time k. The performance indexes considered are

180
A 2
CWMEM-EKF* = E W=(Eg.k, EMEM-EKF* k)
k=0

. (10.16)

CWio-MEM = Z W2(Eg 1, ELo-MEM. k)
k=0

referred as cumulative Wasserstein errors.

10.2.5 Result

The cumulative Wasserstein errors produced by the two filters are respec-
tively

CWneM-EkF* ~ 5314

(10.17)
CWLO—MEM ~ 3193

This result suggests that, in particular circumstances such as simulation
1, the LO-MEM filter can achieve better performance than the MEM-EKF*.

10.3 Simulation 2

10.3.1 Ground truth
motion equations

The 5 boats follow the same motion model defined in simulation 1.
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Figure 10.3: Time evolution of the Wasserstein errors generated by the two

filters.

initial states

The considered initial states are the following

>

~562.5
24
0.05
3
100
10

[—562.5]

N

lI>

~900
24

~0.02
3
60
10

[ 300 ]

8
ow

[I>

—300
24
0.05
2m

3
70

where z{ denotes the initial state of boat i.

[ 780

15 |

[

[I>

[ 600 ]|

1200
24
—0.01
4
60
20 |

(10.18)
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Figure 10.4: Final result of the simulation. In grey is represented the ground
truth trajectory, in blue is represented the estimated trajectory generated
by the MEM-EKF* filter, in red is represented the estimated trajectory
generated by the 2:1-MEM filter.
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input signals

The considered sampling interval is 7' = 1 second and the length of the

simulation is 90 seconds. The driving inputs uZ’i7 u, " of boat i are defined
as follows

measurement generation

It is considered the same measurement model of simulation 1, with the fol-
lowing additional aspects:

e the number of measurements generated by a boat is Poisson with ex-
pected value Ap £ 5;

e clutter is included in the simulation. It is assumed that the num-
ber of clutter measurements is Poisson with expected value Ag £ 10.
The clutter measurements are assumed to be IID random variables
uniformly distributed over the entire scene, so that the true clutter
intensity is 10/15002.

10.3.2 PHD LO-MEM setup
PHD setup

The considered PHD parameters are

pp=1  pp 207 (10.20)
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The considered new born object PHD is composed by the following 4 com-
ponents

wg £107°
a2 [-750 750 0 0 0 T 60 15]
P £ diag (100,100, 15,15,0.1,0.01,1,0.1)
wg £107°
23 2750 —750 0 0 0 3T 60 15]
P§ £ diag (100,100, 15,15,0.1,0.01,1,0.1) (1021)
w £107° '
a2 750 750 0 0 0 5T 60 15]
P3 £ diag (100,100, 15,15,0.1,0.01,1,0.1)
wg 2 107°
e 2[-750 750 0 0 0 T 60 15]
Pg £ diag (100,100, 15, 15,0.1,0.01,1,0.1)
The considered clutter intensity is
10
Ie s —— 10.22
¢ 7 15002 (10.22)

LO-MEM setup

The filter is initialized with the void initialization, i.e. the starting mixture
does not contain any components.

10.3.3 Results

The performance of the filter is qualitatively represented by the following
snapshots of the simulation. In such snapshots the ground truth ellipses are
drawn in grey, while the estimated ellipse are drawn in red. Moreover are
shown the measurements with the following convention:

e if the measurement is a detection, i.e. is generated by a boat, then it
is drawn as a yellow circle;

e if the measurement is a clutter measurement then it is drawn as a red
circle.
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Figure 10.5: Initial condition
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Figure 10.6: Simulation at time k& = 20
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Figure 10.7: Simulation at time k = 40



10.3 Simulation 2 207

eta position {meters)

750

375

-375

-750 -375 S 375 750
csi position (meters)

Figure 10.8: Simulation at time k£ = 60
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Figure 10.9: Simulation at time k& = 90



Chapter 11

Conclusions and future work

The present work of thesis has dealt with the problem of Multiple Extended
Object Tracking (MEOT), i.e. the joint estimation of the kinematic state
and the shape state of an unknown and time varying number of extended
objects. Such a problem involves two sources of difficulty:

e 1) at any given sampling instant, likewise their states, it is not known
the number of objects present in the surveilled scene;

e 2) at any given sampling instant, an object can produce more than
one measurement.

In order to deal with the first difficulty, the concept of random finite set
was introduced. Thanks to the tools provided by FISST, i.e. the multiobject
calculus and its generalization, a feasible RF'S algorithm, i.e. the PHD filter,
was obtained to solve the MEOT problem. More precisely, two different
versions of the PHD filter were discussed:

e standard PHD filter: this type of filter can handle the simultaneous
estimation of the kinematic states of an unknown and time varying
number of point objects, i.e. objects that can generate no more than
one measurement per time step;

¢ extended object PHD filter: this type of filter is the natural ex-
tension of the standard PHD filter, where the objects are considered
extended, i.e. the simplifying assumption that an object can generate
no more than one measurement per time step no longer holds.

Both the standard PHD filter and the extended object PHD filter are
not natively designed to estimate the shape states of the objects present in
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the surveilled scene. In order to get a PHD filter capable to address this
limitation, the problem of the shape estimation of a single extended object
was discussed in detail, leading to two different algorithms:

e GIW filter: this type of filter is the simplest solution to the joint es-
timation of the kinematic and shape states of a single extended object.
As a result, the GIW filter is computationally cheap but achieves poor
performance in practical applications. The drawback is a consequence
of the underlying simplifying assumptions. For example such filter, in
order to get closed-form formulae, assumes that the covariance of the
kinematic state is proportional to the extension (i.e., the area of the
surface) of the object. Consequently, the bigger is the tracked object,
the smaller is the precision of kinematic state estimation.

e MEM-EKF* filter: this type of filter solves some issues of the GIW
filter, such as, for example, the just mentioned problem arising from
the proportionality between the covariance of the kinematic state and
the extension of the object. The MEM-EKF* filter is more accurate
than the GIW filter, but it is characterized by an heavier computational
burden. In general, the gain in the estimation accuracy justifies the
additional computational cost, hence, the MEM-EKF* filter has to be
preferred to the GIW filter.

For both filters, the PHD implementations was devised, leading to two
algorithms that, finally, effectively solve the MEOT problem, i.e. they can
estimate the kinematic state and the shape state of an unknown and time
varying number of multiple extended objects.

The final topic of the present work was an attempt to improve the PHD
filter based on the MEM-EKF* filter, i.e. the so-called LO-MEM filter. The
present work leaves some open problems, which are discussed below and left
for future work.

e Sampling interval problem: the LO-MEM filter is numerically un-
stable when the considered sampling interval is large. In particular,
numerical simulations show that, when the sampling time is large, of-
ten the associated covariance matrix to the corrected estimate of the
shape loses positive-definiteness;

e Cell likelihood verification: in the present work a new model for
the cell likelihood, which is the kernel of a PHD filter, is proposed.
However, the new model was not numerically tested, so that it is not
clear if it is effective;
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e Longitudinal velocity assumption: the LO-MEM motion model
makes the strong assumption that the tracked object cannot move
along the lateral direction. Due to this assumption, the LO-MEM
filter can achieve better performance than MEM-EKF* but, clearly, in
a real scenario this assumption does not hold. An interesting prob-
lem is to extend the LO-MEM filter in a way such that the limiting
assumption can be avoided.
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