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Abstract

The work of the present thesis deals with the Multiple Extended Object Track-
ing (MEOT) problem in data fusion. As suggested by the name, such a
problem amounts to jointly estimating the state of multiple extended ob-
jects, where the attribute extended means that each object can generate an
arbitrary number of different measurements.

More specifically, in the context of this work, the MEOT problem is
studied by taking into account the fact that the great amount of available
measurements allows one to estimate not only the kinematic state of an
object, but also its shape. As a result, two major difficulties have been
faced: the first one consists of estimating how many objects are present
in the surveilled scene and where there are located; the second consists of
estimating the shape of each present object.

A Bayesian viewpoint is adopted, according to which the set of the ob-
jects states is modelled as a random finite set (RFS). In order to get a feasible
solution from the point of view of the computational burden, the RFS of the
tracked object is not represented in terms of its probability density function,
but rather on first-order approximation known in the literature as Probabil-
ity Hypothesis Density (PHD). The resulting algorithm, called PHD filter,
is derived in the first part of the thesis and resolves the first difficulty of
the MEOT problem, i.e. the joint estimation of the kinematic states of an
unknown number of extended objects.

The second part of the thesis deals with the problem of estimating the
shape of a single extended object, whose solution is consequently recast into
the PHD filter formalism. In this part two different algorithms are discussed,
namely the Gaussian inverse Wishart (GIW) filter and the Multiplicative
Error Model - Extended Kalman Filter Star (MEM-EKF*) filter. The GIW
filter can be regarded as a first simple solution to the shape estimation prob-
lem, while the MEM-EKF* filter is an evolution of the GIW filter aiming to
provide better performances. Based on the main ideas of the GIW and the
MEM-EKF* filters, a new solution, called by the author as Lambda Omicron
- Multiplicative Error Model (LO-MEM) filter, is devised in the final chapter
of the thesis.



Sommario

Il presente lavoro di tesi riguarda un problema di data fusion noto col nome
di Tracciamento di Oggetti Estesi Multipli (TOEM). Come suggerito dal
nome, tale problema consiste nella stima congiunta degli stati di molteplici
oggetti estesi, dove il termine esteso indica che ogni oggetto ha la possibilità
di generare un numero arbitrario di differenti misure.

In particolare, in questo lavoro il problema TOEM è studiato tenendo
conto del fatto che l’elevato numero di misure disponibili permette di stimare
non solo lo stato cinematico di un oggetto, ma anche la forma. Conseguente-
mente, nel presente lavoro sono affrontate due difficoltà principali: la prima
consiste nella stima del numero di oggetti presenti nella scena e nella loro
localizzazione; la seconda consiste nella stima della forma di ogni oggetto
presente nella scena.

La soluzione considerata adotta un punto di vista Bayesiano, secondo
il quale l’insieme degli stati degli oggetti è modellato da un insieme finito
aleatorio (RFS = Random Finite Set). Nell’ottica di ottenere una soluzione
computazionalmente accettabile, il RFS degli stati degli oggetti non è rap-
presentato in termini della sua densità di probabilità, bens̀ı in termini della
rispettiva approssimazione al primo ordine nota come Probability Hypothe-
sis Density (PHD). L’algoritmo risultante, chiamato filtro PHD, è derivato
nella prima parte della tesi e risolve la prima grande difficoltà del problema
TOEM, i.e. la stima congiunta degli stati di un numero non precisato di
oggetti estesi.

La seconda parte della tesi affronta il problema della stima della forma
di un singolo oggetto esteso, la cui soluzione è conseguentemente riformulata
nel formalismo del filtro PHD. In questa parte sono discussi due algoritmi,
che sono rispettivamente il filtro Gaussian inverse Wishart (GIW) ed il filtro
al Modello di Errore Moltiplicativo - filtro di Kalman Esteso Stella (MEM-
EKF*). Il filtro GIW può essere visto come una prima semplice soluzione al
problema della stima di forma, mentre il filtro MEM-EKF* è un’evoluzione
del filtro GIW ideata per ottenere prestazioni migliori. Sulla base delle
idee principali dei filtri GIW e MEM-EKF*, una nuova soluzione, chiamata
dall’autore filtro Lambda Omicron - Modello di Errore Moltiplicativo (LO-
MEM), è sviluppata nel capitolo finale della tesi.
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Chapter 1

Introduction

1.1 Objective and thesis structure

One of the crucial and most interesting problems in control systems engi-
neering is the estimation of the state of a dynamic system. In fact, the usual
solution adopted to control a dynamic system is to define the controller as
a suitable state feedback. However, usually the state is unknown, therefore
one must provide a sufficiently robust estimate of the state to the controller.

A special instance of the state estimation problem is called tracking,
which consists in the estimation of the state of a moving object, for example
an aircraft, based on remote measurements, provided by one or more sensors,
for example a radar station, typically in a discrete time fashion.

In 1960, Kalman published a paper describing its solution to the state es-
timation problem, the Kalman filter, which can be considered as the starting
point of the modern tracking systems. Despite its undoubted success in the
vast majority of the state estimation problems, today the Kalman filter does
not provide a practically usable solution to the tracking problem because of
its basic assumptions that, in this special estimation context, read as follows:

� (single object assumption) at each time step, there is one and only
object present in the observed scene;

� (point object assumption) at each time step, the object generates
one and only one measurement.

On the one hand, the first assumption is not valid due to the fact that, in
general, the scene observed by the sensors is populated by an unknown and
time varing number of objects due to the fact that such objects can enter or
leave the scene. Moreover, the scene can contain also false-objects detectable
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2 Introduction

by the sensors. For example, in air surveillance problem one can be interested
in tracking airplanes (true-objects) but not helicopters (false-objects).

On the other hand, the second assumption is no longer valid nowdays
since the advance in sensor technology which has led to an increment into
resolution capabilities, that is the modern sensors, for example the LIDAR
sensors, can observe simultaneously multiple different points of the tracked
object. Thanks to the amount of measurements, it is possible to estimate
both the position of the object, represented by a point regarded as the center,
and the shape of the object, represented by an ellipsoid (or, more often as
an ellipse if the tracking problem is defined in a bidimensional enviroment)
that encodes the extensions and the orientation of the object.

The objective of this thesis is to present three different tracking algo-
rithms that address the two limitations of the Kalman filter.

The first limitation is overtaken by considering the simplest solution pro-
vided by Mahler’s FISST (Finite Set Statistics): the so-called PHD (Proba-
bility Hypotesis Density) filter. This argument is discussed in the first part
of the thesis (chapters 2, 3, 4, 5). The second limitation is overtaken by
discussing in the second part of the thesis (chapters 6, 7, 8, 9) three different
approaches to the tracking problem for extended objects:

1. the GIW (Gaussian Inverse Wishart) filter, which is the first filter in the
literature, introduced by Koch between 2006 and 2011, that handles
the problem of estimating the kinematic state and the shape of the
tracked object;

2. the MEM-EKF* (Multiplicative Error Model - Extended Kalman Filter
Star) filter, an evolution of the GIW filter, developed by Baum et al.
between 2012-2019, that permits to explicitly separate the estimation
of the extensions from the estimation of the orientation of the tracked
object;

3. the LO-MEM (Lambda Omicron - Multiplicativer Error Model) filter,
that is a new filter based on the MEM-EKF* proposed by the author
in order to estimate the state of objects showing high manouvering be-
haviours, i.e. that change rapidly their position and orientation during
time.

The multi-object trackers discussed in this thesis are nothing but the
PHD implementations of the former single object trackers, specifically:

1. the GIW-PHD filter (Granstorm et al., 2012);

2. the PHD MEM-EKF* (Baum et al., 2017);
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3. the LO-MEM PHD (developed in this work).

Finally, the performance of the trackers are compared by means of nu-
merical simulations in the final chapter 10.

1.2 Contributions

The main contribution is the LO-MEM PHD filter, a new multi-object
tracker that tries to improve the estimation performance of the MEM-EKF*
filter in complex scenarios where the multiple objects move in the scene by
rapidly changing in time their positions and orientations.

The LO-MEM PHD filter differs from the MEM-EKF* PHD filter under
the following aspects:

� assumes that every object follows the so-called unicycle motion model,
that is one object can move only along the orientation direction or, in
other words, cannot move along its lateral direction. Due to this fea-
ture, the LO-MEM filter loose of generality with respect of the MEM-
EKF* filter;

� the state of an object is represented in polar coordinates rather than a
Cartesian coordinates. This feature allows to encode explicitly in the
estimation process the former property of the unicycle motion model;

� the prediction step is based on a new non-linear motion model, called
Lambda-Omicron motion model, rather than a linear motion model.
This feature leads to a more accurate estimation of the object orienta-
tion;

� the correction step is computed according to a new measurement vec-
tor, which allows to perform the correction in one operation (rather
than multiple operations). Thanks to this feature, the new orrection
step is less computational demanding and solves some minor problems
of the MEM-EKF* corrector;

� the model of the measurement likelihood, which plays a central role in
the PHD implementation.

1.3 Preliminary discussion on the PHD filter

The PHD filter, the central algorithm of this thesis, can be seen as an evolu-
tion of the so called Bayes’s filter. The Bayes filter is a generalization of the
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Kalman filter that allows to estimate the state of stochastic systems that are
not linear in their dynamics or characterized by Gaussian uncertainties.

The PHD filter, conversly, is an advanced approximation of the so-called
multiobject Bayes filter, which generalizes the Bayes filter (referred as sin-
gle object Bayes filter) because the latter can handle the estimation of the
state of single object (mathematically represented by a dynamic system1)
while the former can handle the estimation of the states of multiple objects
simultaneously.

In order to clarify the mathematics behind the PHD filter, in the next
two subsections are briefly discussed the single object and multiobject Bayes
filters.

1.3.1 Single object Bayes filter

In the single object tracking (SOT) problem, at the time step k one wants
to estimate the value of the actual state Xk ∈ Rn of one object (which
can generate only one measurement per time step) given the set y1:k ,
{y1, . . . , yk} of the measurements provided by a sensor up to the actual time
step k.

The conceptual solution of the SOT problem is represented by the (single
object) Bayes filter, which is a recursive algorithm relying on the following
basic concepts:

� measurement model hk(·, ·) - a function that describes how the mea-
surements are generated by the considered sensor;

� motion model fk(·, ·) - a function that describes what the future value
of the object state will be;

� likelihood function `k(·) - a probabilistic representation of the mea-
surement model;

� transition density ϕk+1|k(·|·) - a probabilistic representation of the mo-
tion model;

� filtered density pk|k(·) - a probabilistic representation of the actual
value of the object state based on the set of measurement actually
available;

� predicted density pk+1|k(·) - a probabilistic representation of the future
value of the object state based on the set of measurement actually
available;

1for this reason the terms object and dynamic system are considered synonyms in this
work
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� optimal estimate x̂k|k - a point in the state space that estimates the
actual value of the object state;

� estimator covariance Pk|k - a matrix that describes the accuracy of the
optimal considered estimate.

Briefly speaking, the derivation of the (single object) Bayes filter consists
essentially in the following procedure:

� step 1: define the measurement and motion models according to the
sensor considered and the time-behaviour of the object under study

xk+1 = fk(xk, wk)

yk = hk(xk, vk)
(1.1)

here xk and xk+1 are the (real) states of the objects at time k and
k + 1, yk is the measure observed at time k by the sensor and wk,
vk are noise signals (typically stationary) characterized by the PDFs
pW (·) and pV (·);

� step 2: find the likelihood function and the transition density from the
measurement and motion models according to the standard formulas
provided by the probability calculus, i.e.

`k(y|x) , p(yk|xk) =
pV (h−1

k (xk, yk))

[detJhk ]xk,h−1(xk,yk)

ϕk+1|k(x|w) , p(xk+1|wk) =
pW (f−1

k (wk, xk+1))

[detJfk ]xk,f−1(wk,xk+1)

(1.2)

here h−1
k (·) and f−1

k (·) are the inverse functions of hk(·) and fk(·),
while detJhk and detJfk are the Jacobian determinants of hk(·) and
fk(·);

� step 3: find the filtered and predicted densities from the likelihood
function and the transition density according to the Bayes and the
Chapman-Kolmogorov equations, i.e.

pk|k(x) ,
`k(y|x)pk|k−1(x)∫
`k(y|ξ)pk|k−1(ξ) dξ

pk+1|k(x) ,
∫
ϕk+1|k(x|w)pk|k(w) dw

(1.3)

here pk|k−1(·) is the predicted density at time k − 1;
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� step 4: extract from the filtered density the optimal estimate by min-
imizing the risk RCk [·], where Ck : R2n 7→ R+ is the choosen cost
function, i.e.

x̂k , arg min
x
RCk [pk|k] (1.4)

with

RCk [pk|k] ,
∫
Ck(x,w)pk|k(w)dw (1.5)

1.3.2 Multiobject Bayes filter

In the more general and challenging multiobject tracking (MOT) problem,
the objective is to estimate the state of several objects given severals mea-
surements provided by several sensors (where, in general, every object can
generate more than one measurement per time step). In this case, if at
the time step k the number of objects is Nk and the number of mea-
surements is mk, the MOT problem consists of estimate simultaneously
the values of the states Xk,1, . . . , Xk,Nk given the set of measurements

y1:m1,mk , {∪
m1
i=1{y1,i}, . . . ,∪mki=1{y1,k}}.

Note that in the MOT problem the numbers Nk is a random integer
(eventually zero), while mk is a realization of a second random integer Mk

(eventually zero), in fact:

� Nk is random because it is not known with certaintly how many ob-
jects are actually present in the scene supervised by the sensors. Such
uncertaintly is a consequence of the fact that objects actually present
in the scene can leave that scene in the future, while objects actually
non present in the scene can enter that scene in the future. In the
Bayesian reasoning the uncertainties are represented in probabilistic
terms, so Nk is random and, in principle, can assume all the possible
values nk = 0, 1, 2, . . . ;

� Mk is random because a sensor may not read any measurement (be-
cause the sensor can be occluted) or may read, in addition to the
measurements generated by the objects in the scene, several false mea-
surements (due to the presence of false objects in the scene). As a
result, Mk can assume all the possible values mk = 0, 1, 2, . . . and it is
modelled as a random variable likewise Nk;

A possible, and convenient, approach to resolve the MOT problem is the
following:

1. collect the actual single object states in the state set

Xk , {Xk,1, . . . , Xk,Nk} (1.6)
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and collect the actual measurements observed by the sensors in the
measurement set

yk , {yk,1, . . . , yk,mk} (1.7)

2. think the starting MOT problem as a non-ordinary SOT problem
where at the time step k one wants to estimate the value of the actual
state Xk of one meta-object given the set y1:k , {y1, . . . , yk} of meta-
measurements readed by a meta-sensor up to the actual time step.

Unfortunately Xk and yk are sets rather than vectors, and this means that
there are several problem to resolve, for example

� the filtered and predicted densities are not defined, since it is not de-
fined the concept of probability density of a set;

� the likelihood and the transition density are not defined, since, once
again, these two terms are in this case probability densities of sets, a
concept not defined;

� the optimal estimate is not defined, since the filtered density is not
defined.

The finite set statistics (FISST) is a theory that fill up all theese theo-
retical gaps by introducing the concept of random finite set. The main ideas
behind FISST are the following:

� the introduction of the concept of RFS allows to define properly a con-
cept of PDF for sets, called multiobject PDF (MPDF) in what follows,
and a concept of integration over the space of MPDFs, called set inte-
gral in what follows. As a result, in FISST the filtered and predicted
densities are well defined and denoted as pk|k({·}), pk+1|k({·});

� due to the definition of set integral, the Bayes equation and the Chapman-
Kolmogorov equation are appliable in the new context of RFSs

pk|k(x) ,
`k(y|x)pk|k−1(x)∫
`k(y|w)pk|k−1(w) dw

pk+1|k(x) ,
∫
ϕk+1|k(x|w)pk|k(w) dw

(1.8)

where the usual definition of integration is replaced by the definition
of set-integral;

� given a generic filtered density pk|k({·}), FISST provides also different
procedures to extract an optimal estimate x̂k (which is a finite set of
vectors in Rn rather than a single vector in Rn).
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The multiobject Bayes filter is an algorithm that propagates in time
the predicted and filtered densities pk|k({·}), pk+1|k({·}) by computing the
Bayes and Chapman-Kolomogorov equations and produces the estimates by
processing the filtered densities pk|k({·}).

1.3.3 Motivation for the PHD filter

The multiobject Bayes filter is computational intractable even in the sim-
ple applications. The PHD filter is an algorithm that solves this problem
by propagating in time not the predicted and filtered densities pk|k({·}),
pk+1|k({·}) but rather the predicted and filtered probability hypothesis densi-
ties Dk|k(·), Dk+1|k(·), which are standard functions of the type f : Rn 7→ R+

that, despite this is not completely true, can be regarded as rough approxi-
mations of pk|k({·}), pk+1|k({·}).

However, the analitical computation of Dk|k(·), Dk+1|k(·) is not straight-
forward and requires advanced tools, the so-called probability genereting
functionals (PGFLs). For this reason, the entire third chapter of the thesis
is devoted only to the PGFLs and fourth chapter to the derivation of the
standard PHD filter (i.e., the computation of Dk|k(·), Dk+1|k(·)). The fifth
chapter discusses the derivation of the PHD filter for extended objects.
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PHD filters

9





Chapter 2

Standard multiobject calculus

2.1 Summary

The idea of FISST is to define the multiobject Bayes filter as a single object
Bayes filter that deals with random finite sets, a new concept of random
variable, rather than random vectors. Hence the objective of FISST is to
recast in the random finite set enviroment the single object Bayes filtering
theory. In order achieve this goal, FISST develops the so called multiobject
calculus, which is the extension of the ordinary multivariate calculus to the
random finite set enviroment.

The multiobject calculus consist in the following 4 steps:

� step 1: define a probabilistic model (pN ,S), which is clarified by the
following definition 1, for random finite sets;

� step 2: translate the probabilistic model (pN ,S) that defines a ran-
dom finite set into a more convenient function βX(·), called belief mass
function. The belief mass function βX(·) is a compact probabilistic de-
scriptor of X equivalent to the model (pN ,S). Equivalent means that
it is possible to recover (pN (·),S) from βX(·) and viceversa. The belief
mass function βX(·) is the random finite set counterpart of the ordi-
nary probability mass function (PMF) PX(·) (which is the distribution
function of a random vector X).

� step 3: introduce a new concept of integral, the so called set integral,
that permits to integrate functions of random finite sets. Basing on
the definition of set integral, the belief mass function can be expressed

11
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as the set integral of a special multiobject function pX({·})

βX(S) =

∫
S

pX(x) dx ∀S ∈ O(Rn) (2.1)

equation (3)1 is the random finite set counterpart of the much more
familiar equation

PX(S) =

∫
S

pX(x) dx ∀S ∈ B(Rn) (2.2)

thus the multiobject function pX({·}) is the random finite set counter-
part of the ordinary PDF pX(·), and for this reason is called multiobject
PDF.

� step 4: introduce a new concept of differentation, the so called Lebesgue-
differentation, that permits to extract, without loosing any informa-
tion2 about a random finite set, the multiobject PDF pX({·}) from a
belief mass function βX(·)

pX(x) =
dβX(S)

dx

∣∣∣∣
S=∅

∀x ∈ F(Rn) (2.3)

equation (5) is the random finite set counterpart of the much more
familiar equation

pX(x) =
dPX(S)

dx

∣∣∣∣
S=(−∞,x]n

=
dPX(x)

dx
∀x ∈ Rn (2.4)

where PX(·) is the cumulative distribution function (CDF) of X, i.e.
the probability mass function PX(·) restricted to the hyper-intervals3

S = (−∞, x]n

PX(x) , PX((−∞, x]n) ∀x ∈ Rn (2.5)

Due to (3) and (5), the multiobject PDF pX({·}) can be regarded as
a probabilistic descriptor of X equivalent to the belief mass function
βX(·). Moreover, turns out that the multiobject PDF pX({·}) is also

1equations (3), (4), (5) and (6) will be discussed in details in the next sections, for this
reason it is not explained here the notation adopted.

2once again, ”without loosing any information” means that it is possible to recover
back the belief mass function from the multiobject PDF.

3the notation (−∞, x]n is a shorthand for the cartesian product
∏n

i=1(−∞, xi].
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equivalent to the model (pN ,S), and this prove the equivalence between
the model (pN ,S) and the belief mass function βX(·).
In conclusion, there are 3 equivalent ways to characterize the statistical
properties of a random finite set: the probabilistic model (pN ,S), the
belief mass function βX(·) and the multiobject PDF pX({·}).

� step 5: define new concept of statistics which summarize in a compact
form the information contained in the multiobject PDF. Such statistics
are the marginal multitarget estimate, the joint multitarget estimate
and the probability hypothesis density. Likewisei n the ordinary do-
main of random vectors, such statistics are not complete probabilistic
desriptors, meaning that it is not possible to recover back the multi-
object PDFs from such statistics (it is only possible to extract such
statistics given the multiobject PDFs). More importantly, this fact
means that there is a loss of information in the extraction of the statis-
tics from the multiobject PDFs, and this can be a problem in complex
scenarios (for example, when the signal-to-noise ratio is low). This fact
will be proved by the so called inversion formula.

2.2 Random finite sets

The ordinary probability theory defines different types of random variables,
for example:

� random integer I: a random variable that draws its instantiations i
from the set Z of all integers;

� random number A: a random variable that draws its instantiations
a from the set R of all real numbers;

� random vector X: a random variable that draws its instantiations x
from the Euclidean space Rn of all real-valued vectors;

In the MOT is involved a new and more sophisticated concept of random
variable, that is:

� random finite set X: a random variable that draws its instantiations
x from the set F(Rn) of all finite subsets of the Euclidean space Rn.

For example, possible instantiations of a random finite set X are the following:
x = ∅, x = {x}, x = {x1, x2}, x = {x1, x2, x3} and so on, where the elements
x1,x2,. . . , are ordinary random vectors belonging to Rn. In short, a random
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finite set is essentially a set with random cardinality, which can be zero as
well, composed by random vectors.

FISST assumes a simplifying hypothesis that prevents some mathemat-
ical issues: the molteplicity of the elements of a random finite set is always
unitary, i.e. are not allowed repetead elements in random finite sets. This
hypothesis is not restrictive because the elements of a random finite set are
vectors drawn from the continuos space Rn, so it is almost impossible that
two elements in a random finite set can be identical.

To gain intuition about what is a random finite set, one can think about
the following algorithm which explains how to sample a random finite set:

1. initialize x = ∅;

2. generate an integer η according to some finite discrete density pN (·);

3. if η > 0 then:

(a) generate the real-valued vectors x1, x2, . . . , xη in Rn according
to some joint symmetric PDF pX1,X2,...,Xη (·, ·, . . . , ·);

(b) include the vectors x1, x2, . . . , xη in x: x← x ∪ {x1, x2, . . . , xη}.

Note that the attributes finite and symmetric describing the densities
pN (·) and pX1,X2,...,Xη (·, ·, . . . , ·) have specific meanings:

� finite means that pN (·) vanishes as the cardinality considered increase,
i.e. limη→∞ pN (η) = 0. This is because a random finite set is a set
composed by a finite number of elements, so it is not allowed the case
|X| =∞;

� symmetric means that pX1,X2,...,Xη (·, ·, . . . , ·) is invariant with respect
to permutations of it arguments, i.e.

pX1,X2,...,Xη (x1, x2, . . . , xη) = pX1,X2,...,Xη (xσ(1), xσ(2), . . . , xσ(η))

∀ permutations σ(·)
.

(2.6)

For example, if η = 2 then the symmetry states that it is true

pX1,X2
(x1, x2) = pX1,X2

(x2, x1). (2.7)

This is because a random finite set is a collection of unordered elements,
in the sense that, for example, {x2, x3, x1} and {x1, x2, x3} are different
representations of the same set. In this case, since

{x2, x3, x1} = {x1, x2, x3} (2.8)
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it is necessary that

pX1,X2,X3(x2, x3, x1) = pX1,X2,X3(x1, x2, x3) (2.9)

so that the PDF pX1,X2,X3(·, ·, ·) must be symmetric, i.e. can be written
as

pX1,X2,...,Xη (x1, x2, . . . , xη) ,
1

η!

∑
σ

p̃X1,X2,...,Xη (xσ(1), xσ(2), . . . , xσ(η))

(2.10)
where p̃X1,X2,...,Xη (xσ(1), xσ(2), . . . , xσ(η)) is a generic PDF (potentially
non-symmetric) and the summation is taken over all η! possible per-
mutations σ(·) of the arguments x1, . . . , xη. Note that the factor 1/η!
guarantees that pX1,X2,...,Xη (x1, x2, . . . , xη) integrates to unity, while
the summation over all the permutations guarantees that the joint PDF
pX1,X2,...,Xη (x1, x2, . . . , xη) is symmetric.

Although, as prescribed by the assiomatic theory of probability, a random
finite set is rigorously defined as a measurable map X : Ω 7→ F(Rn), where

� Ω is some sample space in an underliyng probability space (Ω,Σ,P);

� F(Rn) is the hyperspace of finite subsets of Rn;

it is possible to give a more intuitive and equivalent definition based on the
previous intuitive algorithm.

Definition 1. A finite set X = {X1, X2, . . . , XN} ⊂ Rn is called random
finite set (RFS) over Rn if and only if:

� the cardinality N is a random integer, characterized by a finite discrete
density pN : N 7→ [0, 1] called cardinality density ;

� for all η such that pN (η) > 0, the elements X1, X2, . . . , Xη ∈ Rn are
random vectors, characterized by a symmetric joint PDF

pX1,X2,...,Xη (x1, x2, . . . , xη) ,
1

η!

∑
σ

p̃X1,X2,...,Xη (xσ(1), xσ(2), . . . , xσ(η))

(2.11)
on Rn×η called spatial density.

An RFS is therefores completely characterized by a finite discrete density
pN (·) and a family S , {p̃X1,X2,...,Xη (·, ·, . . . , ·)}η:pN (η)>0 of PDFs or, more
coincisely, by a couple (pN ,S), referred in this document as the model of the
RFS.
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2.3 Belief mass functions

The central set function of the FISST is the-so called belief mass function
(BMF)

βX(S) , P(X ⊆ S) ∀S ∈ O(Rn) (2.12)

where O(Rn) is the class of open subsets of Rn and P : Σ 7→ [0, 1] is the un-
derliyng probability measure. Note the difference between X and S: despite
the fact both X and S are subsets of Rn, the former is a finite subset of Rn,
while the second is a continuos (i.e. non-countably infinite) subset of Rn.

The BMF is the probability of the event X ⊆ S or, in simpler terms, the
probability that the outcome x of X is completely contained in a open region
of interest S ⊆ Rn.

It turns out immediately that the BMF is a direct generalization of the
probability mass function (PMF) of a random vector. In fact, if the RFS X
reduces to a random vector X then

βX(S) = P({X} ⊆ S) = P(X ⊆ S) = P(X ∈ S) , PX(S) ∀S ∈ O(Rn)
(2.13)

It is possible express the BMF in a factorized formula. Definition 1
suggests the following two facts:

� with probability pN (η), the RFS X is composed by η vectors X1, . . . ,
Xη, i.e. its cardinality |X| is exactly equal to η, so

P(|X| = η) = pN (η) (2.14)

� assuming |X| = η, the probability of the event X ⊆ S, denoted concisely
as βX|η(S) , P(X ⊆ S||X| = η), is the probability of the event ’X1,
X2,. . . ,Xη are simultaneously in the region S’, which is PX1,X2,...,Xη (S).
Consequently hold the following

βX|η(S) = PX1,X2,...,Xη (S)

,
∫
Sη
pX1,X2,...,Xη (x1, x2, . . . , xη) dx1 dx2 · · · dxη

(2.15)

where pX1,X2,...,Xη (·, ·, . . . , ·) is the joint PDF of X1, X2, . . . , Xη and
Sη denotes the Cartesian product

∏η
i=1 S = S × S × · · · × S. Note

that, as long as the subset S is in the Borel σ-algebra of Rn (denoted
as B(Rn)), the probability measure βX|η(·) is well defined since it is an
ordinary joint absolute-continue distribution on Rn. This fact is not
in contrast with definition (16) (which considers an open subset S of
Rn) since O(Rn) ⊂ B(Rn).
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Recalling that P(·) is a probability measure, the law of total probabilities
can be applied in order to exploit the two aforementioned facts, leading to
the expressions

βX(S) = P(X ⊆ S) =

∞∑
η=0

P(X ⊆ S||X| = η)P(|X| = η)

=

∞∑
η=0

βX|η(S) pN (η) = pN (0)+

∞∑
η=1

(∫
Sη
pX1,X2,...,Xη (x1, x2, . . . , xη) dx1 dx2 · · · dxη

)
pN (η)

∀S ∈ O(Rn)
(2.16)

where it is assumed by convention that βX|0(S) , 1, which is reasonable
because, since the empty set ∅ is by definition a subset of any set S, the
probability βX|0(S) of the event ∅ ⊆ S is unitary regardless of the value of
S.

2.3.1 Independence for RFSs

Let X1 and X2 be two independent RFSs with BMFs βX1
(·) and βX2

(·) re-
spectively. Let X , X1 ∪ X2 be the union between X1 and X2. It is easy to
see that the BMF βX(·) is factorized into the product of the BMFs βX1(·)
and βX2(·). In fact observe

βX(S) = P(X ⊆ S) = P(X1 ∪ X2 ⊆ S) = P(X1,X2 ⊆ S). (2.17)

Thus, due to the independence of X1 and X2, it follows that P(X1,X2 ⊆ S) =
P(X1 ⊆ S)P(X1 ⊆ S) and

βX(S) = P(X1,X2 ⊆ S) = P(X1 ⊆ S)P(X1 ⊆ S) = βX1
(S)βX1

(S). (2.18)
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2.4 Set integrals and multiobject PDFs

According to the expression (2.16), a BMF can be also written also in the
following form

βX(S) = pN (0) +

∞∑
η=1

(∫
Sη
pX1,...,Xη (x1, . . . , xη) dx1 · · · dxη

)
pN (η)

= pN (0) +

∞∑
η=1

1

η!

(∫
Sη
η! pX1,...,Xη (x1, . . . , xη) dx1 · · · dxη

)
pN (η)

= pN (0) +

∞∑
η=1

1

η!

∫
Sη
η! pX1,...,Xη (x1, . . . , xη) pN (η) dx1 · · · dxη

(2.19)
where this final expression plays a central role in FISST since it leads to the
following definitions.

Definition 2. Let (pN ,S) be the model of an RFS X, then the finite set
function pX : F(Rn) 7→ R+ defined as

pX(x) ,


pN (0) if x = ∅
1! pX1(x1) pN (1) if x = {x1}
...

η! pX1,...,Xη (x1, . . . , xη) pN (η) if x = {x1, . . . , xη}

=


pN (0) if x = ∅
pN (1) p̃X1

(x1) if x = {x1}
...∑
σ pN (η) p̃X1,...,Xη (xσ(1), . . . , xσ(η)) if x = {x1, . . . , xη}

(2.20)
is called multiobject PDF (MPDF) of the RFS X.

Definition 3. Let f : F(Rn) 7→ R be a finite set function. The set-integral
of f(·) concentrated over S ⊆ Rn is defined as∫

S

f(x) dx , f(∅) +

∞∑
η=1

1

η!

∫
Sη
f({x1, x2, . . . , xη}) dx1dx2 · · · dxη. (2.21)

Often the RHS will be expressed in short as

∞∑
η=0

1

η!

∫
Sη
f({x1, x2, . . . , xη}) dx1dx2 · · · dxη. (2.22)
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According to definitions 2 and 3, equations (2.19) are equivalent to

βX(S) = pX(∅) +

∞∑
η=1

1

η!

∫
Sη
pX({x1, . . . , xη}) dx1 · · · dxη

,
∞∑
η=0

1

η!

∫
Sη
pX({x1, . . . , xη}) dx1 · · · dxη ,

∫
S

pX(x) dx

(2.23)

which expresses the fact that the BMF is nothing but the set-integral of a
MPDF.

2.5 Janossy densities

Let pX({·}) be a MPDF. Given the cardinality η = |X = x|, the function
pX({x1, . . . , xη}) : Rn×η 7→ R+

pX({x1, . . . , xη}) ,

{
pN (0) if η = 0

η! pX1,...,Xη (x1, . . . , xη) pN (η) if η > 0

=

{
pN (0) if η = 0∑
σ pN (η) p̃X1,...,Xη (xσ(1), . . . , xσ(η)) if η > 0

(2.24)
is called Janossy density of order η. Equations (2.24) show how to com-
pute the MPDF pX({·}) given the model (pN ,S). On the other hand, it is
also possible to recover the model (pN ,S) given the MPDF pX({·}) by the
following two operations:

� cardinality marginalization: since∫
pX({x1, . . . , xη}) dx1dx2 · · · dxη = η! pN (η) (2.25)

it follows that the generic value pN (η) of the cardinality density is given
by

pN (η) =
1

η!

∫
pX({x1, x2, . . . , xη}) dx1dx2 · · · dxη (2.26)

� spatial marginalization: since

pX1,X2,...,Xη (x1, x2, . . . , xη) =
pX({x1, . . . , xη})

η! pN (η)
(2.27)
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it follows from (2.26) that the spatial density pX1,X2,...,Xη (·) can be
computed as

pX1,X2,...,Xη (x1, x2, . . . , xη) =
pX({x1, x2, . . . , xη})∫

pX({x1, x2, . . . , xη}) dx1dx2 · · · dxη
(2.28)

Equations (2.26) and (2.28) state that there is a 1-to-1 corrispondance be-
tween the model (pN ,S) and the MPDF pX(·). So in conclusion, one can
switch between the characterizations (pN ,S) and pX(·) without loosing any
information about the considered RFS X. The BMF βX(·) is a third and
equivalent characterization of an RFS X, in the sense that there is a 1-to-1
corrispondance with the MPDF pX(·) or the model (pN ,S): the transforma-
tion pX(·) 7→ βX(·) is provided by the set integration (2.23), on the other hand
the inverse transformation βX(·) 7→ pX(·) is given by a new operation, which
will be defined in the following section, that is the so-called set differentation.

2.6 Set derivatives

2.6.1 Lebesgue differentation

Consider an ordinary PMF PX(·) on Rn which admits a PDF pX(·), so

PX(S) =

∫
S

pX(x) dx ∀S ∈ B(Rn) (2.29)

the ordinary vector calculus tells that, given PX(S), it is possible to recover
pX(·) via the ordinary vectorial differentation of the CDF

pX(x) =
dPX(S)

dx

∣∣∣∣
S=(−∞,x]n

=
∂nPX(S)

∂x1 · · · ∂xn

∣∣∣∣
S=(−∞,x]n

(2.30)

unfortunately such method is not directy applicable to the RFS case, because
the result of the ordinary differentation is not a MPDF but an ordinary PDF.
However there is a more powerful procedure to recover pX(·), which can be
easily extended to the RFS case, called Lebesgue differentation.

Consider a neighborhood Ex of the generic point x ∈ Rn, for example the
hypercube Cx,ε , {x′ ∈ Rn : |x′i − xi| < ε/2 for i = 1, 2, . . . , n} with small
edge ε > 0. Since Ex = Cx,ε is a simple open subset of Rn, so Cx,ε ∈ B(Rn),
it holds that

PX(Cx,ε) =

∫
Cx,ε

pX(ξ) dξ. (2.31)
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Now observe that, since ε is small, its possible to approximate, in the
entire neighborhood Bx,ε, the density pX(·) with a constant density with
value pX(x)4

PX(Cx) ≈
∫
Cx,ε

pX(x) dξ = pX(x)

∫
Cx,ε

dξ = pX(x) εn. (2.32)

Hence it holds that

pX(x) ≈ PX(Cx,ε)

εn
(2.33)

which, if the limit exists, takes the following strong form for ε ↓ 0

pX(x) = lim
ε↓0

PX(Cx,ε)

εn
. (2.34)

In conclusion, the Lebesgue differentation of PX(·) consists of the following
transformation PX(·) 7→ pX(·)

dPX(x)

dx
, lim

ε↓0

PX(Cx,ε)

εn
. (2.35)

The function dPX(·)
dx is called Radon-Nykodim derivative of PX(·) in x

and, by construction, is the PDF pX(·). Note that the limit is performed
only from above since the edge ε is a non-negative quantity.

The Lebesgue differentation can be expressed in a more general form
which is suitable for the next extension to the RFS domain. Consider a
generic open subset S of Rn such that S ∩ Cx,ε = ∅, i.e. a set S disjoint
from the small hyper-cube Cx,ε. Thanks to the additivity of the PMF PX(·)
(it is a probability measure), it is possible to write

PX(S ∪ Cx,ε) = PX(S) + PX(Cx,ε) ∀S ∈ O(Rn) : S ∩ Cx,ε = ∅ (2.36)

from which it follows immediately that

lim
ε↓0

PX(Cx,ε)

εn
= lim

ε↓0

PX(S ∪ Cx,ε)− PX(S)

εn
∀S ∈ O(Rn) : S ∩ Cx,ε = ∅.

(2.37)
Thus the transformation over PX(·)

dPX(S)

dx
, lim

ε↓0

PX(S ∪ Cx,ε)− PX(S)

εn
∀S ∈ O(Rn) : S ∩ Cx,ε = ∅

(2.38)

4such approximation is valid if PX(·) is sufficiently smooth, for example if it is abso-
lutely continuos
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also returns the density pX(·) like (125). In this case, the function dPX(·)
dx is

called generalized Radon-Nykodim derivative of PX(·) in x.
The constraint S∩Cx,ε = ∅ can also be seen as a constraint on x given S:

equation (2.38) is valid only when the point x moves outside S. In fact, if x
is inside S then for ε sufficiently small it holds that Cx,ε ⊂ S, so S∪Cx,ε = S
and equation (2.38) vanishes.

dPX(S)

dx
, lim

ε↓0

PX(S ∪ Cx,ε)− PX(S)

εn
∀S 63 x (2.39)

In the MOT this is limitation because there is a case (see formulas (2.69))
where the differentation needs to be evaluated on S = Rn, so that equation
(2.39) will be generalized furthermore.

The BMF, likewise the PMF, is an ordinary set function of the type Φ :
O(Rn) 7→ R+, so the generalized Lebesgue differentation can also be applied
to a BMF leading to the following generalized Radon-Nykodim derivative

dβX(S)

dx
, lim

ε↓0

βX(S ∪ Cx,ε)− βX(S)

εn
∀S 63 xn (2.40)

2.6.2 Properties of the Lebesgue differentation

The generalized Lebesgue differentation obeys to the ordinary differentation
rules, for example:

� constant rule: let Φ(S) = K be a constant set function. Then

dK

dx
= 0 (2.41)

� linear rule: let Φ(S) =
∫
S
f(x) dx be a set function induced by the

density f(·). Then
dΦ(S)

dx
= f(x) (2.42)

note that this fact is true because the generalized Lebesgue differenta-
tion is defined as the operation that extracts the density from a set
function of the type Φ(S) =

∫
S
f(x) dx;

� sum rule: let Φ1(S) =
∫
S
f1(x) dx, Φ2(S) =

∫
S
f2(x) dx be set func-

tions induced by the densities f1(·), f2(·) and let a1, a2 be real numbers.
Then

d[a1 Φ1(S) + a2 Φ2(S)]

dx
= a1

dΦ1(S)

dx
+a2

dΦ2(S)

dx
= a1 f1(x)+a2 f2(x)

(2.43)
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in other words, the generalized Lebesgue differentation is a linear trans-
formation of set functions.

� monomial rule: let Φ(S) =
∫
S
f(x) dx be a set function induced by

the density f(·) and let k be an integer. Then

d[Φ(S)]k

dx
= k [Φ(S)]k−1 dΦ(S)

dx
= k [Φ(S)]k−1 f(x) (2.44)

� product rule: let Φ1(S) =
∫
S
f1(x) dx, Φ2(S) =

∫
S
f2(x) dx be set

functions inducted by the densities f1(·), f2(·). Then

d[Φ1(S) Φ2(S)]

dx
=

dΦ1(S)

dx
Φ2(S) + Φ1(S)

dΦ2(S)

dx
= f1(x) Φ2(S) + Φ1(S) f2(x)

(2.45)

� chain rule: let Φ(S) =
∫
S
f(x) dx be a set function inducted by the

density f1(·) and let φ(·) be a real valued function. Then

d[f(Φ1(S))]

dx
=

dϕ(y)

dy

∣∣∣∣
y=Φ(S)

dΦ(S)

dx
=

dϕ(y)

dy

∣∣∣∣
y=Φ(S)

f(x). (2.46)

Note that dϕ(·)
dy is the ordinary derivative of the ordinary function ϕ(·).

2.6.3 Set differentation

The objective of this section is to define an operation βX(·) 7→ pX(·) that
allows to extract the relative MPDF pX(·) from a given BMF βX(·). In order
to get the solution to this problem, it is useful to firstly understand how to
recover from the BMF βX(·) the first 3 Janossy densities pX(∅), pX({x1}),
pX({x1, x2}).

� Janossy density of order 0: consider the expression

βX(S) = pX(∅) +

∞∑
η=1

1

η!

∫
Sη
pX({x1, . . . , xη}) dx1 · · · dxη. (2.47)

By setting S = ∅ turns out for any η > 0 that∫
∅η
pX({x1, . . . , xη}) dx1 · · · dxη = 0 (2.48)

thus the zero order Janossy density pX(∅) is directly given by the BMF
βX(·) restricted to the empty set ∅

pX(∅) = βX(∅) (2.49)
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� Janossy density of order 1: the first order derivative (in the gener-
alized Lebsegue sense) of the generic BMF βX(·) is

dβX(S)

dx1
=

d

dx1

[
pX(∅) +

∞∑
η=1

1

η!

∫
Sη
pX({x1, . . . , xη}) dx1 · · · dxη

]

=
dpX(∅)

dx1︸ ︷︷ ︸
=0

+
d

dx1

[∫
S

pX({x1}) dx1

]
︸ ︷︷ ︸

=pX({x1})

+

∞∑
η=2

1

η!

d

dx1

[∫
Sη
pX({x1, . . . , xη}) dx1 · · · dxη

]
(2.50)

as one can show, setting S = ∅ leads for any η > 1 to

d

dx1

[∫
Sη
pX({x1, . . . , xη}) dx1 · · · dxη

]
S=∅

= 0 (2.51)

so that the following relation holds

pX({x1}) =
dβX(S)

dx1

∣∣∣∣
S=∅

(2.52)

which expresses the fact that the first order Janossy density pX({x1})
is given by the following couple of operations

1. differentation of the BMF βX(·) with respect x1;

2. restriction of the derivative dβX(·)
dx1

to the empty set ∅.

� Janossy density of order 2: the second order derivative (in the
generalized Lebsegue sense) of the generic BMF βX(·) is defined as

d2βX(S)

dx2 dx1
,

d

dx2

[
dβX(S)

dx1

]
(2.53)
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thus, by recalling (2.23),

d2βX(S)

dx2 dx1
=

d

dx2

[
pX({x1}) +

∞∑
η=2

1

η!

d

dx1

[∫
Sη
pX({x1, . . . , xη}) dx1 · · · dxη

]]

=
dpX({x1})

dx2︸ ︷︷ ︸
=0

+
1

2

d2

dx2 dx1

[∫
S2

pX({x1, x2}) dx1 dx2

]
︸ ︷︷ ︸

=2pX({x1,x2})

+

∞∑
η=3

1

η!

d2

dx2 dx1

[∫
Sη
pX({x1, . . . , xη}) dx1 · · · dxη

]
.

(2.54)

Finally, setting S = ∅ implies for any η > 2 that

d

dx2 dx1

[∫
Sη
pX({x1, . . . , xη}) dx1 · · · dxη

]
S=∅

= 0 (2.55)

so that

pX({x1, x2}) =
d2βX(S)

dx2 dx1

∣∣∣∣
S=∅

. (2.56)

The second order Janossy density pX({x1, x2}) is, once again, given by
the following couple of operations

1. differentation of the BMF βX(·) in x2 and x1 or, more coincisely,
in the finite set x , {x1, x2};

2. restriction of the derivative dβX(·)
dx = d2βX(·)

dx2 dx1
to the empty set ∅

In general, the generic Janossy density pX({x1, . . . , xη}) is given by the
2-step procedure

1. differentation of the BMF βX(·) in xη, xη−1, . . . , x1 or, in short, in the

finite set x , {x1, . . . , xη}. Such derivative is defined recursively via
the rule

dηβX(S)

dxη dxη−1 . . . dx1
,

d

dxη

[
dη−1βX(S)

dxη−1 dxη−2 . . . dx1

]
(2.57)

2. restriction of the derivative dβX(·)
dx = dηβX(·)

dxη dxη−1...dx1
to the empty set ∅

Definition 4. Let Φ : O(Rn) 7→ R be a set function. Then, if it exists, the
set derivative of Φ(·) is the set function dΦ

dx : O(Rn) 7→ R defined as

dΦ(S)

dx
,

{
Φ(S) if x = ∅

dηΦ(S)
dxη···dx1

if x = {x1, . . . , xη}
∀S + x (2.58)
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where dηΦ(S)
dxη···dx1

is the η-th generalized Radon-Nykodim derivative of Φ(·).

Thanks to the definition of set derivative, the inverse operation of set-
integration is expressed coincisely as set-differentation, which consists in the
computation of every generalized Radon-Nykodim derivatives restricted to
the empty set.

This means that integrating an MPDF pX({·}) produces the relative BMF
βX(·), while evaluating on the empty set S = ∅ the set-derivative of a BMF
βX(·) provides the relative MPDF pX({·})

pX(x)

∫
S

(·) dx
−−−−−→

∫
S

pX(x) dx , βX(S)

d(·)
dx

∣∣
S=∅−−−−−−→ pX(x) (2.59)

2.7 Probability Hypothesis Density

2.7.1 Definition

The so-called probability hypothesis density (PHD) can be regarded as the
RFS counterpart of the concept of expected value. Its definition is not
straightforward, in fact consider the naively

E[X] =

∫
x pX(x) dx =

∞∑
η=0

1

η!

∫
{x1, . . . , xη} pX({x1, . . . , xη}) dx1 · · · dxη.

(2.60)
Clearly, the product {x1, . . . , xη} pX({x1, . . . , xη}) is not defined because
{x1, . . . , xη} is a set rather than a vector, so that such approach cannot
be considered. On the other hand, a well-defined concept is the expected
value of a multiobject function f : F(Rn) 7→ R:

E[f(X)] ,
∫
f(x) pX(x) dx

=

∞∑
η=0

1

η!

∫
f({x1, . . . , xη}) pX({x1, . . . , xη}) dx1 · · · dxη

(2.61)

since now the products, the sums and the integrations are all performed
between two multiobject functions f({·}), pX({·}). Due to this fact, the
standard approach adopted by FISST in order to define the expected value
of an RFS is to replace the RFS X with a ”look-like” identity function f({·})
for the considerd RFS X. The (quite natural) choice of FISST for f({·}) is



2.7 Probability Hypothesis Density 27

to consider the indicator function δ({·})(x), which is defined as follows

x→ δX(x) ,

{∑
xi∈X δi(x) if x 6= ∅

0 if x = ∅
=

{∑
xi∈X δ(xi − x) if x 6= ∅

0 if x = ∅
(2.62)

where δi(·) is the Dirac delta concentrated at the point xi. Note that δX(x)
is a function of the RFS X and not of the vector x: the latter has to be
regarded as a fixed external parameter. As a result, the expected value of
an RFS X, that is the PHD, is not a finite set but a standard function

Definition 5. Let X be an RFS characterized by the MPDF pX({·}). The
probability hypothesis density (PHD) or intensity of the RFS X is the function
DX : Rn 7→ R defined as follows

DX(x) , E[δX(x)] =

∫
δX(x) pX(x) dx. (2.63)

Notice that in the computation of the set-integral that defines a PHD, the
argument x has to be regarded as a fixed parameter, while the integration
variable is rather the finite set x. Note that in order to know the PHD one
has to compute a different set integral for every possible value of x.

2.7.2 Practical interpretation

According to definition 5, the integral of a PHD DX(·) over a region S ∈
O(Rn) is ∫

S

DX(x) dx =

∫
S

∫
δx(x) pX(x) dxdx

=

∫ (∫
S

δx(x) dx

)
pX(x) dx

=

∫ (∫
S

∑
xi∈x

δ(xi − x) dx

)
pX(x) dx

=

∫ (∑
xi∈x

∫
S

δ(xi − x) dx

)
pX(x) dx

. (2.64)

Now, by observing that∫
S

δ(xi − x) dx =

{
1 if xi ∈ S
0 otherwise

(2.65)
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it turns out that ∑
xi∈x

∫
S

δ(xi − x) dx = |x ∩ S| (2.66)

so that the combination of (2.66) with (2.64) yields to∫
S

DX(x) dx =

∫
|x ∩ S| pX(x) dx = E[|X ∩ S|] . (2.67)

Hence, in conclusion, the PHD DX(·) is a function that, if integrated over
a region S, expresses how many elements of the considered RFS are expected
in S.

In analogy to the ordinary concept of PDF, the PHD DX(·) is a function
(more precisely, a density) which tends to take large values in regions S that
most likely contain at least one element of X. Note however that DX(·) is not
a PDF because in general does not integrate to the unity. In fact, by setting
S = Rn, it turns out that the integral of DX(·) is the expected cardinality of
the considered RFS X, i.e.,∫

DX(x) dx = E[|X|] (2.68)

is a generic, not necessarely integer, non-negative number.

2.7.3 Relationship with the BMF

Given the BMF βX(·) of an RFS X, the PHD DX(·) can be found via the
following set-differentation

DX(x) =
dβX(S)

d{x}

∣∣∣∣
S=Rn

. (2.69)

Note that, in principle,it is not well defined because the definition of
generalized Radon-Nykodim derivative requires that the point x where is
differentation is performed be outside the region S where the set function
under differentation is evaluated (and this cannot occur since S = Rn). In
this situation, it is necessary to use a more general definition of derivative,
which, in particular, is

dβX(S)

dx
, lim
ε1,ε2↓0

βX((S \ C2
x,ε2) ∪ C1

x,ε1)− βX(S \ C2
x,ε2)

εn1
(2.70)

where C1
x,ε1 , C

2
x,ε2 are hypercubes with edges ε1, ε2 > ε1 centered in x Such

definition works for every possible choice of x and S.
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Hence, equation (2.69) in combination with the newly defined Radon-
Nykodim derivative tells how to compute the PHD DX(·) as a function of
the BMF βX(·). Conversly, the BMF βX(·) cannot be recovered from the PHD
DX(·), meaning that there is not a 1-to-1 corrispondance between βX(·) and
DX(·).

The PHD DX(·) does not provide a full statistical characterization of
an RFS X, but a synthetic representation of X consting only of the most
important information. In this sense, the PHD DX(·) can be regarded as a
first order statistical description of X, while the BMF βX(·) (or the MPDF
pX({·}) or the model (pN ,S)) is a full statistical description of X.

2.8 RFS models

2.8.1 IID RFS

Let pN (·) be a discrete density and let pX(·) be a symmetric PDF over
Rn. An RFS X is called independent and identically distributed (IID) with
cardinality pN (·) and spatial density pX(·) if and only if its MPDF takes the
form

pX(x) = |x|! pN (|x|)
∏
x∈x

pX(x) (2.71)

by set-integrating the MPDF turns out that the BMF is

βX(S) =

∞∑
η=0

(∫
S

pX(x) dx

)η
pN (η) (2.72)

2.8.2 Poisson RFS

Let X be an IID RFS. The RFS X is called Poisson if and only if its cardinality
is Poisson for some parameter λ > 0, i.e.

pN (η) = Poλ(η) , exp(−λ)
λη

η!
. (2.73)

It turns out immediately that the multiobject PDF of a Poisson RFS is

pX(x) = exp(−λ)λ|x|
∏
x∈x

pX(x). (2.74)

By introducing the so-called intensity function I(·) , λ pX(·), the ex-
pression of the multiobject PDF of a Poisson RFS simplifies to

pX(x) = exp(−λ)
∏
x∈x

I(x). (2.75)
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Note that the integral of the intensity function provides an estimate of
the cardinality of the RFS X, indeed it holds that∫

I(x) dx = λ = EpN [N ]. (2.76)

This fact explains the reason why I(·) is called intensity of the RFS X:
if I(·) has a large integral then the mean value of the number of vectors
contained in X is large (≡ X is ’intense’).

By set-integrating the MPDF follows that the BMF is

βX(S) = exp

(
−λ+

∫
S

I(x) dx

)
(2.77)

on the other hand, by set-differentiating the BMF follows that the PHD is

D(x) = I(x) (2.78)

2.8.3 Bernoulli RFS

Let X be an IID RFS. The RFS X is called Bernoulli if and only if its
cardinality is Bernoulli for some parameter p ∈ [0, 1] called probability of
existence, i.e.

pN (η) = Berp(η) , (1− p)δ0(η) + pδ1(η). (2.79)

It turns out immediately that the multiobject PDF of a Bernoulli RFS
is

pX(x) = [(1− p) δ0(|x|) + p pX(x) δ1(|x|)] . (2.80)

Note that pX(x) = 0 if |x| > 2. Set-integrating the BMF gives the follow-
ing BMF

βX(S) = 1− p+ p

∫
S

pX(x) dx (2.81)

moreover the PHD is
D(x) = p pX(x) (2.82)

2.8.4 Multi-Bernoulli RFS

Let be X1, X2, . . . , Xm be a finite family of independent Bernoulli RFSs with
probabilities of existence p1, p2, . . . , pm respectively. An RFS X is called
multi-Bernoulli with components X1, X2, . . . , Xm if and only if

X =

m⋃
i=1

Xi. (2.83)
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Due to independence, the BMF is

βX(S) =

m∏
i=1

βXi(S) =

m∏
i=1

(
1− pi + pi

∫
S

pXi(x) dx

)
. (2.84)

One can show via set-differentation that, for η = 0, 1, . . . ,m, the generic
Janossy density is

pX({x1, . . . , xη}) =
∑
A∈Fmη

∏
i∈A

pi
∏
i/∈A

(1− pi)

(∑
σ

pXi(xσ(i))

)
(2.85)

where Fmη , {A : A ⊆ {1, 2, . . . ,m}, |A| = η}, while pX({x1, . . . , xη}) = 0
for any η > m.

By set differentiating the BMF, turns out that the cardinality density of
a multi-Bernoulli RFS is Poisson-Binomial with parameters p1, . . . , pm, i.e.

pN (η) = PBp1,...,pm(η)

,

{∑
A∈Fmη

∏
i∈A pi

∏
i/∈A(1− pi) if η ∈ {0, 1, . . . ,m}

0 otherwise

(2.86)

the PHD is

D(x) =

m∑
i=1

pi pXi(x) (2.87)
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Chapter 3

Generalized multiobject
calculus

3.1 Summary

In order to clarify the derivation of the PHD filter, the main objective of this
chapter is to provide a good understanding of the meaning of PGFL and a
good understanding of the main tool used to manipulate them, i.e. the the
functional derivative. The PGFLs are RFS descriptions equivalent to the
BMFs or the MPDFs, but they have the advantage to greatly simplify some
calculations in the derivation of the PHD filter. Without the PGFLs and the
functional derivatives, such derivation is much harder even if not impossible.

The main concepts of the chapter are the following:

� the definitions of functional and PGFL. In the first part of the chapter
such definitions are given and then the PGFLs of the most common
RFSs are presented;

� the definition of functional derivative. This is the tool used to ex-
tract the PHD density from a PGFL. For this reason, the concept of
functional derivative plays a central role in the derivation of the PHD
filter;

� properties of functional derivatives. Instead to apply the definitions,
the functional derivatives can be computed more easily according to
some rules presented in the final part of the chapter.

33
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3.2 Functionals

A functional F [·] is a function of the type F : T 7→ R, where T is the
following set of functions

T , {h : Rn 7→ R : 0 ≤ h(x) ≤ 1 ∀x ∈ Rn}. (3.1)

In simple words, a functional is a transformation F [·] that associates a
special function h(·), called test function, to a real number. For example,
the following tranformations are functionals

f [h] ,
∫
h(x) f(x) dx (3.2)

hx ,

{
1 if x = ∅∏
x∈x h(x) if x 6= ∅

(3.3)

called respectively linear functional and power functional. If f(·) is a PDF
then the linear functional assumes the meaning of expected value of the test
function h(·). In particular, if X is a random vector with PDF f(·), then
the probability of the event X ∈ S can be written as the following linear
functional

P(X ∈ S) = PX(S) ,
∫
S

f(x) dx =

∫
1S(x) f(x) dx = f [1S ] (3.4)

where 1S is the indicator function of the open set S (1S(x) , 1 iff x ∈ S, 0
otherwise). It is easy to see that the linear functional, as suggested by the
name, is linear, i.e. f [a h1 + b h2] = a f [h1] + b f [h2] for any choice of scalars
a, b and test functions h1, h2.

3.3 Probability Generating Functional

3.3.1 Definition and interpretations

The most important functional involved in FISST is the so-called probability
generating functional (PGFL), defined as follows:

G[h] ,
∫
hx pX(x) dx (3.5)

where h(·) is a generic test function and pX({·}) is an MPDF. Essentially, the
generic PGFL is a linear functional of the power functional (3.3), where the
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involved integral is a set integral and the considered density is the MPDF
pX({·}), so that G[h] = pX[hX]. In this sense, a PGFL can be seen as the
expected value of the power hX, where X is a RFS whose MPDF is pX({·}),
i.e.,

G[h] = E[hX]. (3.6)

Another interesting interpretation of the meaning of PGFL is provided
by the following relationship

G[1S ] =

∫
1xS pX(x) dx =

∫
S

pX(x) dx = β(S) (3.7)

where it is observed that the power of the indicator function 1S(·) does not
vanish only when the dummy finite set x = {x1, . . . , xη} is included in the
region S. Equation (3.7) states that the PGFL is a generalized BMF, where
the indicator function 1S(·) is replaced by a generic test function h(·). For
this reason, the multiobject calculus involving the PFGLs is referred to as
”generalized”.

Note that the PGFL represents a full characterization of an RFS: given
a PGFL, equation (3.7) expresses how to recover the BMF. On the other
hand, given a BMF one can recover the MPDF (via set differentation) and
then compute the PGFL according to the definition.

3.3.2 Properties

� (Linearity): Let GaX1+bX2
[·] be the PGFL of the linear combination

a pX1
({·})+b pX2

({·}) of the two MPDFs pX1
({·}), pX2

({·}). Let GX1
[·],

GX2
[·] be the PGFLs of the MPDFs pX1

({·}), pX2
({·}). Then

GaX1+bX2
[h] = aGX1

[h] + bGX2
[h]. (3.8)

Note that this is a trivial consequence of the set integral linearity.

� (Independent factorization): Let X = ∪ki=1Xi be the union of k
independent RFSs X1, . . . , Xk. Let GX[·] be the PGFL of X and let
GXi [·] be the PGFL of Xi. Then

GX[h] =

k∏
i=1

GXi [h]. (3.9)
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3.4 Examples of PGFLs

3.4.1 Poisson PGFL

Let X be a Poisson RFS with intensity I(·) = λ pX(·). According to the
definition, the PGFL of such RFS is

G[h] = exp(I[h− 1]) (3.10)

where it is used the linear functional notation I[h] ,
∫
h(x) I(x) dx and it

is observed that

I[h]− λ = I[h− 1] (3.11)

.

3.4.2 IID PGFL

Let X be an IID RFS with cardinality pN (·) and spatial density pX(·). The
PGFL of such RFS is

G[h] = [GN (z)]z=pX [h] . (3.12)

Once again, pX [h] is the linear functional notation for
∫
h(x) pX(x) dx.

Moreover it is introduced to so-called probability generating function (PGF)
GN (·) of the cardinality density pN (·), which is defined as

GN (z) ,
∞∑
η=0

zη pN (η) (3.13)

and, essentially, it is the z-transform of pN (·). In this sense, the concept
of PGFL can be seen a RFS counterpart of the standard concept of PGF.
Moreover, a PGFL can be also tought as a sort of z-tranform of a MPDF
pX({·}).

3.4.3 Bernoulli PGFL

Let X be a Bernoulli RFS with probability of existence p and spatial density
pX(·). The PGFL of such RFS is given by

G[h] = 1− p+ p pX [h] (3.14)
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3.4.4 Multi-Bernoulli PGFL

Let X be a multi-Bernoulli RFS with Bernoulli components {(pi, pXi(·))}mi=1.
According to the independent factorization, the PGFL of such RFS is

G[h] =

m∏
i=1

(1− pi + pi pXi [h]) (3.15)

3.5 Functional derivatives

3.5.1 Heuristic definition

Likewise the set derivative can be used to extract the MPDF from a BMF,
the functional derivative can be used to extract the MPDF from a PGFL.
Moreover, the functional derivative can be used to extract the PHD from a
PGFL.

Recall the definition of directional derivative (usually called Frechet deriva-
tive) for functions F : Rn 7→ R

∂F

∂w
(x) , lim

ε→0

F (x+ εw)− F (x)

ε
(3.16)

which quanties the how much the function F (·) changes when onsidering a
small perturbation of its argument x in the direction w ∈ Rn.

The so-called Gateaux derivative is a direct generalization of the Frechet
derivative for functionals F : T 7→ R

∂F

∂g
[h] , lim

ε→0

F [h+ εg]− F [h]

ε
(3.17)

which represents how much the functional F [·] changes when it is considering
a small variation of its argument h in the direction g ∈ T . Finally, the
functional derivative (aka Volterra derivative) is a special case of Gateaux
derivative, which considers the special direction provided by the Dirac delta
function concentrated at the point x

∂F

∂{x}
[h] ,

∂F

∂δx
[h] , lim

ε→0

F [h+ εδx]− F [h]

ε
(3.18)

wich represents how the functional F [·] changes when h(·) is perturbated at
the point x. More in general, the functional derivative of a functional F [·]
with respect to a finite set x = {x1, . . . , xη} is defined as iterated Gateaux
derivative in the directions δx1 ,. . . , δxη

∂F

∂ x
[h] ,

{
F [h] if x = ∅

∂ηF
∂δxη ··· ∂δx1

[h] if x = {x1, . . . , xη}
(3.19)
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� Example 1: consider the generic linear functional F [h] , f [h] =∫
h(w) f(w) dw. The first order functional derivative is

∂f [h]

∂{x1}
=

∂

∂δx1

[
∂f [h]

∂∅

]
=

∂

∂δx1

[f [h]] = lim
ε→0

f [h+ εδx1
]− f [h]

ε

= lim
ε→0

∫
[h(w) + εδx1

(w)]f(w) dw −
∫
h(w) f(w) dw

ε

= lim
ε→0

(∫
h(w) f(w) dw + ε

∫
δx1

(w) f(w) dw
)
−
∫
h(w) f(w) dw

ε

= lim
ε→0

∫
δx1(w) f(w) dw =

∫
δx1(w) f(w) dw = f(x1)

.

(3.20)
Since the result does not depend on the generic test functions h(·), the
higher order functional derivative are all identically zero. In conclusion,
the functional derivative of a linear functional is

∂f [h]

∂ x
=


f [h] if x = ∅
f(x1) if x = {x1}
0 otherwise

(3.21)

In simple words, the functional derivative has the effect of extracting
the density function f(·) from the functional f [·].

3.5.2 Rigourous definition

The definition (3.18) is only a practical engineering heuristic. The rigorous
definition of functional derivative is based on the definition of set derivative.
First, consider the set function

Φ(S) ,
∂F

∂g
[h]

∣∣∣∣
g=1S

. (3.22)

Such set function admits a density φ(·), so it is possible to express Φ(·) as
follows:

Φ(S) =

∫
S

φ(x) dx. (3.23)

The density φ(·), which is given by Lebesgue-differentation of Φ(·), is the
rigorous definition of functional derivative of F [·], i.e.

∂ F

∂ {x}
[h] , φ(x) =

d

dx
[Φ(S)] =

d

dx

[
∂F

∂g
[h]

∣∣∣∣
g=1S

]
. (3.24)
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In a more fancy way, it is possible to define the functional derivative in terms
of set-differentatation of Φ(·)

∂ F

∂ {x}
[h] ,

d

d{x}

[
∂F

∂g
[h]

∣∣∣∣
g=1S

]
S=∅

(3.25)

This equation is the so-called constructive definition of functional derivative,
since it provides an explicit method to compute the functional derivative of
F [·]. On the other hand, Equation (47) can be expressed with the more
meaningful notation as follows

∂F

∂g
[h]

∣∣∣∣
g=1S

=

∫
S

∂ F

∂ {x}
[h] dx (3.26)

this is the so-called non-constructive definition of functional derivative (it is
only an implicit definition since the functional derivative is under the sign of
integral). The non-constructive definition can be naturally extended to the
generic Gateaux derivative as follows

∂F

∂g
[h] =

∫
g(x)

∂ F

∂ {x}
[h] dx (3.27)

The idea about behind this formula is based on the fact that

∂F

∂g
[h]

∣∣∣∣
g=1S

=

∫
1S(x)

∂ F

∂ {x}
[h] dx (3.28)

so that replacing 1S(·) with the generic test function g(·) provides the general
Gateaux derivative of the functional F [·]. Equation (3.28) express the fact
that it is possible to recover any Gateaux derivative by knowing the simpler
singleton functional derivative.

3.6 Properties of the functional derivatives

3.6.1 Set derivatives as special functional derivatives

∂F [h]

∂ x

∣∣∣∣
h=1S

=
dφF (S)

dx
(3.29)

Proof (sketch)

Let Ex be a neighborhood of x with hypervolume ε. If ε→ 0 then

δx(w) =
1Ex(w)

ε
(3.30)
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consequently εδx = 1Ex and

∂F [h]

∂ {x}

∣∣∣∣
h=1S

= lim
ε→0

F [h+ εδx]− F [h]

ε

∣∣∣∣
h=1S

= lim
ε→0

F [h+ 1Ex ]− F [h]

ε

∣∣∣∣
h=1S

= lim
ε→0

F [1S + 1Ex ]− F [1S ]

ε

.

(3.31)
Let φF (S) , F [1S ] the set function induced by the functional F [·] and
assume for simplicity that S and Ex are disjoint, so that 1S + 1Ex = 1S∪Ex
and

∂F [h]

∂ {x}

∣∣∣∣
h=1S

= lim
ε→0

F [1S∪Ex ]− F [1S ]

ε
= lim
ε→0

φF (S ∪ Ex)− φF (S)

ε
=

dφF (S)

d{x}
(3.32)

By iterating the procedure over the entire generic finite set x = {x1, . . . , xη},
equation (3.29) is obtained.

In particular, the functional derivative of the PGFL restricted to the indica-
tor function h = 1S is the set derivative of the BMF, i.e.,

∂G[h]

∂ x

∣∣∣∣
h=1S

=
dβ(S)

dx
. (3.33)

From the above fact, some interesting results arise:

� setting S = ∅ provides the MPDF, indeed

∂G[h]

∂ x

∣∣∣∣
h=1∅

=
dβ(S)

dx

∣∣∣∣
S=∅

= pX(x). (3.34)

Since 1∅ = 0, the operation that extracts the MPDF from the PGFL
is the functional derivative restricted to the null test function h = 0

∂G[h]

∂ x

∣∣∣∣
h=0

= pX(x) (3.35)

� setting S = Rn and by considering the singleton x = {x}, provides the
PHD density, in fact

∂G[h]

∂ {x}

∣∣∣∣
h=1Rn

=
dβ(S)

d{x}

∣∣∣∣
S=Rn

= DX(x). (3.36)

Since 1Rn = 1, the operation that extracts the PHD density from the
PGFL is the functional derivative restricted to unitary test function
h = 1

∂G[h]

∂ {x}

∣∣∣∣
h=1

= DX(x) (3.37)
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3.6.2 Fundamental theorem of multiobject calculus

pX(x) =
∂

∂ x

[∫
hw pX(w) dw

]
h=0

(a)

F [h] =

∫
hw

∂ F [h]

∂ w

∣∣∣∣
h=0

dw (b)

(3.38)

Proof (sketch)

� (a): equation (63a) is already proved. In fact, by observing that the
set integral in the RHS is the PGFL G[·] of the MPDF pX({·}), follows
trivially that equation (1.38a) is equation (1.34).

� (b): suppose for simplicity that the considered functional F [·] is the
PGFL G[·] of the MPDF pX({·}). In this case, equation (1.38a) tells
that

∂ F [h]

∂ w

∣∣∣∣
h=0

= pX(w). (3.39)

Hence the RHS of (1.38b) is, as claimed, the PGLF of pX({·}) itself∫
hw pX(w) dw = F [h]. (3.40)

The result still holds in the general case where F [·] is as a generic
functional.

The fundamental theorem proves that the PGFL of RFS is a descriptor
equivalent to the BMF or MPDF, in fact:

� given a MPDF, the definition of PGFL provides the rule to compute
the relative PGFL;

� given the PGFL, (1.38a) provides the rule to get back the MPDF.

3.6.3 Turn the crank rules for functional derivatives

� (constant rule) - Let F [h] , K be a constant functional, i.e. a
functional that does not depends on any test function h(·). Then

∂K

∂ {x}
= 0 (3.41)
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� (linear rule) - Let F [h] , f [h] ,
∫
h(x) f(x) dx be a linear functional

with density f(·). Then

∂f [h]

∂ {x}
= f(x) (3.42)

� (monomial rule) - Let F [·] be a generic functional and let N be an
integer. Then

∂(F [h])N

∂ {x}
= N (F [h])N−1 ∂F [h]

∂ {x}
(3.43)

� (sum rule) - Let F1[·], F2[·] be two generic functionals and let a, b be
two real numbers. Then

∂

∂ {x}
(aF1[h] + b F2[h]) = a

∂F1[h]

∂ {x}
+ b

∂F2[h]

∂ {x}
(3.44)

� (product rule) - Let F1[·], F2[·] be two generic functionals. Then

∂

∂ {x}
(F1[h]F2[h]) =

∂F1[h]

∂ {x}
F2[h] + F1[h]

∂F2[h]

∂ {x}
(3.45)

� (first chain rule) - Let F [·] be a generic functional and let ϕ(·) be a
generic scalar function. Then

∂ ϕ(F [h])

∂ {x}
=

dϕ(y)

dy

∣∣∣∣
y=F [h]

∂F [h]

∂ {x}
(3.46)

3.7 Second chain rule

3.7.1 Functional transformations

Let ϕ[h](·) be a functional transformation, i.e. a function that transforms a
test function h(·) into another test function ϕ[h](·).

� Example 2: The functional transformations are defined pointwise on
the domain of the starting test function h(·). An example of functional
transformation is

ϕ[h](w) = 1− p(w) + p(w)h(w) (3.47)

where, necessarily, p(·) is a second test function (if this is not the
case then ϕ[h](·) will not be a test function). Note that by fixing in
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w0 the argument w and by varing the test function h(·), the func-
tional transformation ϕ[·](w0) behaves exactly like an ordinary func-
tional: ϕ[·](w0) associates the actual test function h(·) to a scalar
ϕ[h](w0) = 1 − p(w0) + p(w0)h(w0). From this prospective, it make
sense to compute the functional derivative of the functional ϕ[·](w0)

∂ ϕ[h](w0)

∂ {x}
, lim
ε→0

ϕ[h+ εδx](w0)− ϕ[h](w0)

ε
(3.48)

whatever it is the fixed point w0.

In general a functional transformation can be seen as a continuos family
of functionals parametrized by the argument w of the base test function
h(·). Due to this interpretation, the definition of functional derivative for a
functional transformation ϕ[·](·) is

∂ ϕ[h](w)

∂ {x}
, lim
ε→0

ϕ[h+ εδx](w)− ϕ[h](w)

ε
∀w ∈ Rn (3.49)

3.7.2 Theorem

Consider a functional F [·]. Since ϕ[h](·) is a test function for any fixed
base test function h(·), it is well defined the composition F [ϕ[h]], wich is a
functional as well. Thus, it make sense to compute the functional derivative
of the composition F [ϕ[h]].

Theorem 1. (second chain rule) - Let be F [·] be a generic functional and
let ϕ[h](·) be a generic functional transformation. Then

∂ F [ϕ[h]]

∂ {x}
=

∫
∂ ϕ[h](w)

∂ {x}
∂ F [h̃]

∂ {w}

∣∣∣∣
h̃=ϕ[h]

dw (3.50)

Proof

According to the practical definition of functional derivative, holds

∂ F [ϕ[h]]

∂ {x}
= lim
ε→0

F [ϕ[h+ εδx]]− F [ϕ[h]]

ε
(3.51)

now, by considering the linear approximation

ϕ[h+ εδx] ≈ ϕ[h] +
∂ ϕ[h]

∂ {x}
ε (3.52)
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which can be written as

∂ F [ϕ[h]]

∂ {x}
= lim
ε→0

F [ϕ[h] + ∂ ϕ[h]
∂ {x} ε]− F [ϕ[h]]

ε

= lim
ε→0

F [h̃+ ∂ ϕ[h]
∂ {x} ε]− F [h̃]

ε

∣∣∣∣
h̃=ϕ[h]

(3.53)

the third member is the Gateaux derivative of F [·] evaluated on the test

function h̃ = ϕ[h] and in the direction g = ∂ ϕ[h]
∂ {x} , so

∂ F [ϕ[h]]

∂ {x}
=
∂ F [h̃]

∂ g

∣∣∣∣
g=

∂ ϕ[h]
∂ {x} ,h̃=ϕ[h]

(3.54)

thus, the conclusion is

∂ F [ϕ[h]]

∂ {x}
=

∫
∂ ϕ[h](w)

∂ {x}
∂ F [h̃]

∂ {w}

∣∣∣∣
h̃=ϕ[h]

dw (3.55)

as claimed

3.7.3 Observation

Note that the two notation

∂ F [ϕ[h]]

∂ {x}
∂ F [h̃]

∂ {x}

∣∣∣∣
h̃=ϕ[h]

(3.56)

figuring in the previous proof are confusingly similar, but, as one naturally
expects, in general doesn’t represent the same quantity. In fact, the former
is given by

∂ F [ϕ[h]]

∂ {x}
= lim
ε→0

F [ϕ[h+ εδx]]− F [ϕ[h]]

ε
(3.57)

while the latter is given by the definition functional derivative restricted to
h̃ = ϕ[h], i.e.

∂ F [h̃]

∂ {x}

∣∣∣∣
h̃=ϕ[h]

= lim
ε→0

F [h̃+ εδx]− F [h̃]

ε

∣∣∣∣
h̃=ϕ[h]

= lim
ε→0

F [ϕ[h] + εδx]− F [ϕ[h]]

ε
.

(3.58)
Now, by comparing the difference quotients, turns out clearly that

∂ F [ϕ[h]]

∂ {x}
= lim
ε→0

F [ϕ[h+ εδx]]− F [ϕ[h]]

ε
6=

lim
ε→0

F [ϕ[h] + εδx]− F [ϕ[h]]

ε
=
∂ F [h̃]

∂ {x}

∣∣∣∣
h̃=ϕ[h]

(3.59)
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rather, the correct equivalence is expressed by

∂ F [ϕ[h]]

∂ {x}
= lim
ε→0

F [ϕ[h+ εδx]]− F [ϕ[h]]

ε
≡

lim
ε→0

F
[
ϕ[h] + ε∂ ϕ[h]

∂ {x}

]
− F [ϕ[h]]

ε
=
∂F [h̃]

∂g

∣∣∣∣
g=

∂ ϕ[h]
∂{x} ,h̃=ϕ[h]

(3.60)

so, in conclusion, in (1.50) the former functional derivative is performed in

the direction ∂ ϕ[h]
∂{x} , while the latter derivative is performed in the direction

δx, i.e.

∂ F [ϕ[h]]

∂ {x}
=
∂F [h̃]

∂g

∣∣∣∣
g=

∂ ϕ[h]
∂{x} ,h̃=ϕ[h]

6= ∂ F [h̃]

∂ {x}

∣∣∣∣
h̃=ϕ[h]

=
∂F [h̃]

∂g

∣∣∣∣
g=δx,h̃=ϕ[h]

(3.61)
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Chapter 4

Standard PHD filter

4.1 Summary

This chapter provides a detailed proof of the PHD filter equations, which ex-
press how to compute the predicted and corrected PHDs Dk|k−1(·), Dk|k(·).

In this chapter such filter is referred as standard in order to make a
distinction with the second version designed to handle extended object. The
difference between this two PHD filters is in the measurement model, where
the standard PHD filter assumes that an object can generate no more than
one measure per sampling step, while the PHD filter for extended object
assumes that an object can generate an arbitrary number of measures per
sampling step.

The chapter is organized as follows:

� firstly the equation of the multiobject Bayes filter, presented in the
introduction of the thesis, are re-written in the language of PGFLs;

� then is defined the motion and measurement model of the standard
PHD filter, in short called standard model, and the consequent multi-
object Bayes filter, called standard multiobject Bayes filter, is derived
in its PGFL form;

� in the final part the PHD filter equations are computed starting from
the equations of the standard multiobject Bayes filter. In conclusion,
the equations of the standard PHD filter are simplified by consider-
ing linear-Gaussian models, yielding to the so-called Gaussian mixture
PHD filter (GM-PHD filter), which is an algorithm that can be easily
implemented to the calculator.

47
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4.2 General multi-object Bayes filter

4.2.1 Preliminary discussion

In the classical Kalman filtering theory, many real aspects involved in the
detection process are not taken into account. For example, consider the
situation where a ground-to-air radar is used to surveil a certain region of
space called scene.

The output of the radar is a so-called signature, which is a continous
signal s : [0, 2π] 7→ R that maps an azimuthal angle α into a radio-frequency
intensity s(α). If an object is located at angle α then the signature gets a
value s(α) significantly stronger than the noise floor of the radar. Due to
this fact, the azimuthal position of an object present in the scene is extracted
from the signature by comparing the signature with a suitable treshold τ :
the object is declared present in α if s(α) > τ , and in such case one says
that the object is detected at azimuth α. The actual detection process is
characterized by the following facts:

� due to measurement noise, if the treshold τ is set too low then it is
very likely to get detections even when there is no object in the scene.
Such detections are called false detections. The set of false detections
is called clutter ;

� if the treshold τ is set too high then it is very unlikely to detect objects
present in the scene. In this case one says that the objects present in
the scene that don’t produce any detection are miss detected ;

� if an object is too close to the radar then it is possible that it can
generate more than one detection. In such case the object is called
extended object ;

� if a group of objects is too far from the radar then it is possible that
the entire group generate only one global detection. In such case, the
objects in the group are called unresolved ;

� if an object is not too near and not too far from the radar then it is
very likely that it generates only one detection. In such case the object
is called point object ;

� an object actually non present in the scene can enter the scene in the
future. This event is called object birth;

� an object actually present in the scene can leave the scene in the future.
This event is called object death.
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These are the major aspects that are not considered in the classical single-
object oriented Kalman filtering theory. It is worth to point out that the
actual example is only one istance of many real applications where the clas-
sic Kalman filtering theory is not sufficient to address the state estimation
problem.

On the other hand, the multiobject Bayes filter can handle all these
issues by considering measurement and motion models based on the RFS
representation. In particular, the standard multiobject Bayes filter considers:

� a standard measurement model which takes into account the clutter
and miss-detections for point objects;

� a standard motion model which takes into account object birth and
death.

Extended and unresolved objects are treated by the non standard multiobject
Bayes filter.

4.2.2 General equations

The multiobject Bayes filter is the direct generalization of the single ob-
ject Bayes filter, where the basic concepts of PDF, integration, likelihood,
transition density are replaced by the FISST concepts of multiobject filtered
and predicted densities, set integral, multiobject likelihood and transition
density.

The two main steps of the multiobject Bayes filter are the following:

� Correction step: the Bayes equation for the multiobject Bayes filter
gets the form

pk|k(x) =
`k(y|x) pk|k−1(x)∫
`k(y|w) pk|k−1(w) dw

(4.1)

where pk|k({·}) is the filtered MPDF, `k({·}|x) is the multiobject like-
lihood and pk|k−1({·}) is the predicted MPDF. Note that the evidence
is computed as a set integral. The Bayes equation (104) defines the
correction step performed by the multiobject Bayes filter.

� Prediction step: the Chapman-Kolmogorov equation for the multi-
object Bayes filter gets the form

pk+1|k(x) =

∫
ϕk+1|k(x|w) pk|k(w) dw (4.2)
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where ϕk+1|k({·}|w) is the multiobject transition density. Once again,
a set integration is involved in place of an ordinary integration. The
Chapman-Kolmogorov equation (105) defines the prediction step of the
multiobject Bayes filter.

4.2.3 PGFL form

The multiobject Bayes filter is expressed in terms of the predicted MPDF
pk|k−1({·}) as a function of the corrected MPDF pk−1|k−1({·}) through the
multiobject Chapman-Kolmogorov equation

pk|k−1(x) =

∫
ϕk|k−1(x|w) pk−1|k−1(w) dw (4.3)

and in terms of the corrected MPDF pk|k({·}) as function of the predicted
MPDF pk|k−1({·}) through the multiobject Bayes equation

pk|k(x) =
`k(y|x) pk|k−1(x)∫
`k(y|w) pk|k−1(w) dw

(4.4)

Since a PGFL, likewise an MPDF, provides a full characterization of an
RFS, the multiobject Bayes filter can be expressed in terms of PGFLs as
well. Consider the predicted and corrected PGFLs

Gk|k−1[h] ,
∫
hx pk|k−1(x) dx Gk|k[h] ,

∫
hx pk|k(x) dx. (4.5)

These PGFLs are respectively given by a transformed Chapman-Kolmogorov
and a transformed Bayes equations, which are derived as follows.

� Chapman-Kolmogorov equation: starting with the simpler pre-
dicted PGFL, it holds that

Gk|k−1[h] =

∫
hx
(∫

ϕk+1|k(x|w) pk−1|k−1(w) dw

)
dx

=

∫ (∫
hx ϕk|k−1(x|w) dx

)
pk−1|k−1(w) dw

. (4.6)

By defining Φk|k−1[·|w] as the PGFL of the Markov transition MPDF
ϕk|k−1(·|w)

Φk|k−1[h|w] ,
∫
hx ϕk|k−1(x|w) dx (4.7)

from which it follows that the PGFL form of the Chapman-Kolmogorov
equation is

Gk|k−1[h] =

∫
Φk|k−1[h|w] pk−1|k−1(w) dw. (4.8)
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� Bayes equation: now consider the corrected PGFL, it holds that

Gk|k[h] =

∫
hx
(

`k(y|x) pk|k−1(x)∫
`k(y|w) pk|k−1(w) dw

)
dx

=

∫
hx `k(y|x) pk|k−1(x) dx∫
`k(y|w) pk|k−1(w) dw

=

∫
hx `k(y|x) pk|k−1(x) dx[∫

hw `k(y|w) pk|k−1(w) dw
]
h=1

. (4.9)

By defining Lk[·|w] as the PGFL of the likelihood MPDF `k|k−1(·|w)

Lk[g|w] ,
∫
gy `k(y|w) dy (4.10)

it follows that
∂ Lk[g|w]

∂ y

∣∣∣∣
g=0

= `k(y|w) (4.11)

from which it follows that the corrected PGFL can be written as

Gk|k[h] =

∫
hx ∂ Lk[g|x]

∂ y

∣∣
g=0

pk|k−1(x) dx[∫
hw ∂ Lk[g|w]

∂ y

∣∣
g=0

pk|k−1(w) dw
]
h=1

=

∂
∂g y

[∫
hx Lk[g|x] pk|k−1(x) dx

]
g=0

∂
∂g y

[∫
hw Lk[g|w] pk|k−1(w) dw

]
h=1,g=0

(4.12)

where the symbol ∂/∂g y means that the differentation is performed
(only) with respect to the test function g(·) (while h(·) is mantained
fixed). In other words, ∂/∂g y is a partial functional derivative evalu-
ated in y. By introducing the bivariate PGFL of the bivariate multi-
object density `k(·|·) pk|k−1(·)

Fk[h, g] ,
∫
hw Lk[g|w] pk|k−1(w) dw

=

∫
hw
(∫

gy `k(y|w) dy

)
pk|k−1(w) dw

=

∫
hw gy `k(y|w) pk|k−1(w) dydw

(4.13)

from which it turns out finally that the PGFL form of the Bayes equa-
tion (121) is

Gk|k[h] =

∂ Fk[h,g]
∂g y

∣∣
g=0

∂ Fk[h,g]
∂g y

∣∣
h=1,g=0

. (4.14)
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4.3 Standard multi-object Bayes filter

4.3.1 Standard measurement model

The standard measurement model makes the following assumptions:

1. an object detection is produced according to the observation model
Y = h(X,V ), where V is the measurement noise. Note that this
assumption holds in two different situations:

� the detection process is based on a single sensor, characterized by
the model h(·, ·), that can produce simultaneously several mea-
surements;

� the detection process is based on several sensors, characterized by
a common model h(·, ·), that can produce up to one measurement;

2. the clutter set is Poisson with intensity I : Rp 7→ R≥0, where Rp is the
measurement space;

3. an object is detected with probability pD : Rn 7→ [0, 1], where Rn is
the state space;

4. an object can generate up to one measurement, i.e. all objects are
considered pointwise. In other words, an object can be miss-detected
or can generate one measurement;

5. a measurement concerns at most one object, i.e. all objects are re-
solved. In other words, a measurement can be a false detection or can
be a detection of an object;

6. clutter and the set of object measurements are statistically indepen-
dent.

Given the above assumptions, the standard measurement model states
that the set of measurements Y , {Y1, . . . , Y|Y|}, referred to as multiobject
measurement (in short multimeasurement), consists of by two parts:

� the first part is the clutter C, which is simply the collection of the
false detections produced by the detection process. In other words,
the clutter C is the subset of the multimeasurement Y formed by the
measurements wich are not produced by objects

C = {Yi ∈ Y : Yi is a false detection} (4.15)
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� the second part is the set of detections h(X), referred as multidetection,
which is simply the collection of the true detections produced by the
detection process. In other words, the multidetection h(X) is the sub-
set of the multimeasurement Y formed by the measurements wich are
produced by objects

h(X) = {Yi ∈ Y : Yi is a detection} (4.16)

.

At this high level of the discussion the standard measurement model is ex-
pressed by the following simple set equation

Y = h(X) ∪ C (4.17)

which, intrestingly, resembles the ordinary measurement model Y = h(X) +
V considered in the ordinary single object Bayes filter.

The clutter C is an RFS that does not require any further explana-
tion, since assumption 2 states explicitly that it is Poisson. On the other
hand the multidetection h(X) is an RFS that needs further explanation. Let
X , {X1, . . . , X|X|} be the mulitobject state (in short multistate). Due to
assumptions 4 and 5, the generic object with state Xi ∈ X generates one
measure, which is Yi = h(Xi, Vi) according to assumption 1, if such object
is detected, while doesn’t generate any measurement if such object is not
detected. As a consequence of this fact, the generic object with state Xi ∈ X
is associated with an RFS h(Xi), referred to as detection, such that

h(Xi) ,

{
{h(Xi, Vi)} if object with state Xi is detected

∅ if object with state Xi is not detected
. (4.18)

Since the detection h(Xi) is an RFS with cardinality concetrated over {0,1},
it is Bernoulli. The actual definition considers a generic object, so it holds
for every object in the scene and leads to the following natural definition for
the multidetection h(X)

h(X) ,
⋃
Xi∈X

h(Xi). (4.19)

Thus in conclusion, due to assumption 6, the multidetection h(Xi) is multi-
Bernoulli and consequently the multimeasurement Y is Poisson-multi-Bernoulli.

4.3.2 Standard motion model

The standard motion model makes the following assumptions:
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1. an object with actual state X can evolve to the future state X ′ ac-
cording to the motion model X ′ = f(X,W ), where W is the process
noise;

2. the birth set is Poisson with intensity IB : Rn 7→ R≥0, where Rn is the
measurement space;

3. an object doesn’t disappear from the scene, i.e. survives, with proba-
bility pS : Rn 7→ [0, 1], where Rn is the state space;

4. object spawning is not allowed. i.e. an object can disappear or can
survives and if survives then it generates only one new state;

5. a new state is generated up to one survived object, i.e. multiple actual
states cannot fuse in one new state. This means that a future state is
generated by the movement of one survived object or it is generated
by the appearance of a new object;

6. the birth set and the set of survived object are statistically indepen-
dent.

Given these assumptions, the standard measurement model states that the

future multistate X′ ,
{
X ′1, . . . , X

′
|X′|

}
consists of two parts:

� the first part is the set of new born objects B, wich is simply the
collection of the objects that are just appeared in the scene. In other
words, the birth set B is the subset of the future multistate X′ formed
by the states wich are not generated by the motion of the survived
objects

B = {X ′i ∈ X′ : X ′i is a new born state} (4.20)

� the second part is the set of survived objects f(X), which is simply the
collection of the states generated by the motion of the survived objects

f(X) = {X ′i ∈ X′ : X ′i is not a new born state} . (4.21)

The standard motion model is expressed by the following simple set equation

X′ = f(X) ∪ B (4.22)

wich resembles the ordinary motion model X ′ = f(X) + W considered in
the single object Bayes filter.

The birth set B is already complete defined by assumption 2 (it is Poisson
with given intensity function). The set of survived objects f(X) is defined
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similarly to h(X): given X =
{
X1, . . . , X|X|

}
, the generic object with state i,

according to assumptions 4 and 5, can move in a new state X ′i = f(Xi,Wi)
or can disappear, so such generic object is associated to the RFS

f(Xi) ,

{
{f(Xi,Wi)} if object with state Xi survives

∅ if object with state Xi disappears
. (4.23)

In total there are |X| different instances of the previous RFS (one per object),
which can be collected in the global RFS

f(X) ,
⋃
Xi∈X

f(X) (4.24)

The birth set B is assumed Poisson, while the RFS f(Xi) is Bernoulli, so that
f(X) turns out to be multi-Bernoulli and X′ Poisson-multi-Bernoulli. The
conclusion is that the standard motion model is analogous to the standard
measurement model where the following substitutions are considered

C→ B h(X)→ f(X) Y → X′ (4.25)

This means that all the previous results found for the standard measurement
model still hold for the standard motion model (with the new conventions).

4.3.3 PGFL form

The standard motion and measurement models are respectively

Xk+1 = f(Xk) ∪ Bk

Yk = h(Xk) ∪ Ck
(4.26)

where at any given time step k

� the RFS of survived objects f(Xk) is multi-Bernoulli with parameters
{pS(X), ϕk+1|k(·|X)}X∈Xk ;

� the RFS of new born objects Bk is Poisson with intensity IB(·);

� the RFS of detected objects h(Xk) is multi-Bernoulli with parameters
{pD(X), `k(·|X)}X∈Xk ;

� the clutter Ck is Poisson with intensity IC(·).

Moreover, the standard model assumes that all involved RFS involved are
statistically independent from each other. Due to this assumption, it is
easy to derive the PGFLs of the Markov transition MPDF and the likeli-
hood MPDF. Consequently, it is also easy to derive the PGFL form of the
Chapman-Kolmogorov and Bayes equations.
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� Markov PGFL: Let GS
k[·|Xk], GB

k [·] be the PGFLs of f(Xk), Bk re-
spectively. It holds that

GS
k[h|Xk] =

∏
X∈Xk

(1− pS(X) + pS(X)ϕk+1|k[h|X])

= (1− pS + pS ϕk+1|k[h])Xk
(4.27)

GB
k [h] = exp(IB[h− 1]) (4.28)

where ϕk+1|k[h|X] ,
∫
h(x)ϕk+1|k(x|X) dx. Due to the independence,

the PGFL Gk+1|k[·|Xk] of the Markov transition MPDF ϕk+1|k({·}|Xk)
is given by

Φk+1|k[h|Xk] = GS
k[h|Xk]GB

k [h]

= (1− pS + pS ϕk+1|k[h])Xk exp(IB[h− 1])
(4.29)

� likelihood PGFL: Let GD
k [·|Xk], GC

k [·] be the PGFLs of h(Xk), Ck
respectively. With the same previous reasoning, it holds that

Lk[h|Xk] = GD
k [h|Xk]GC

k [h]

= (1− pD + pD `k[h])Xk exp(IC[h− 1])
(4.30)

where `k[h|X] ,
∫
h(x) `k(x|X) dx.

� Chapman-Kolmogorov equation: the PGFL form of the Chapman-
Kolmogorov equation for the standard multiobject Bayes filter is given
by

Gk|k−1[h] =

∫
(1− pS + pS ϕk|k−1[h])w exp(IB[h− 1]) pk−1|k−1(w) dw

= exp(IB[h− 1])

∫
(1− pS + pS ϕk|k−1[h])w pk−1|k−1(w) dw

= exp(IB[h− 1])Gk−1|k−1[1− pS + pS ϕk|k−1[h]]
(4.31)

where, naturally, the corrected PGFL is defined as

Gk−1|k−1[h] ,
∫
hw pk−1|k−1(w) dw. (4.32)

Note that the corrected PGFL Gk−1|k−1[·] operates over the functional
transformation h 7→ 1− pS + pS ϕk|k−1[h].
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� Bayes equation: It turns out that

Fk[h, g] =

∫
hw [(1− pD + pD `k[g])w exp(IC[g − 1])] pk|k−1(w) dw

= exp(IC[g − 1])

∫
hw(1− pD + pD `k[g])w pk|k−1(w) dw

= exp(IC[g − 1])

∫
[h (1− pD + pD `k[g])]w pk|k−1(w) dw

= exp(IC[g − 1])Gk|k−1[h (1− pD + pD `k[g])]

.

(4.33)
Hence, the PGFL form of the Bayes equation for the standard multi-
object Bayes filter is

Gk|k[h] =

∂
∂g y

[
exp(IC[g − 1])Gk|k−1[h (1− pD + pD `k[g])]

]
g=0

∂
∂g y

[
exp(IC[g − 1])Gk|k−1[h (1− pD + pD `k[g])]

]
h=1,g=0

(4.34)
.

4.4 General PHD filter

4.4.1 Idea behind the PHD filter

The central idea of the PHD filter is to propagate the corrected PHD Dk|k(x)
of the estimand Xk rather than the full corrected MPDF pk|k({·}).

Then, the estimate x̂k is extracted fromDk|k(·) by considering the E[|Xk|] =
Dk|k[1] largest peaks of Dk|k(·). Note that the PHD filter is optimal in the
sense that it extracts the MAP estimate from Dk|k(·) (and not from pk|k(·)).

Due to this advanced approximation techinique, the multiobject Bayes
filter, wich is combinatorially intractable, reduces to the PHD filter, wich is
polynomial in complexity (more precisely, if the actual number of objects and
measurements are n and m then the complexity is O(nm)). The PHD filter
represents a rough approximation of the multiobject Bayes filter, resulting
in a great amount of loss in information. Despite this fact, in some scenarios
the PHD filter performs better than the conventional multihypothesis filters.

4.4.2 PHD filter vs Kalman filter

To understand why and when the PHD filter works correctly, one can think
the PHD filter as the multiobject counterpart of the steady state Kalman
filter. Consider a single object tracking problem where the corrected PDF
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pk|k(·) is unimodal, symmetric and with a time invariant covariance: in this
situation the first-order approximation

pk|k(x) ≈ N (x|µk|k, P ) , pk|k(x|µk|k) (4.35)

where N (·|µk|k, P ) denotes a Gaussian PDF with expected value µk|k and
covariance P given by the steady state Kalman filter, is accurate. This means
that one can propagate the first order moment µk|k alone (rather than the
full PDF pk|k(·)) without loosing the most important information about the
estimand xk; the notation pk|k(·|µk|k) reminds that µk|k contains the relevant
information about xk. In jargon, one says that µk|k is a sufficient statistics.

4.4.3 Limitations of the PHD filter

The PHD filter, likewise the steady state Kalman filter, assumes that the
multiobject first order moment, the PHD Dk|k(·), is a sufficient statistics of
the estimand Xk, i.e. the following approximation holds

pk|k(x) ≈ pk|k(x|Dk|k). (4.36)

Such approximation is reasonable under the following conditions:

1. sensors are unbiased and charactezied by small covariances, meaning
that `k(·|·) is concentrated around the true values of the object states.
Here small means that, somewhat, the covariances are small with re-
spect to the distances between the real values of the object states;

2. clutter is not intense, meaning that the number of false measurements
Ic[1] is small with respect the number of objects present in the scene.

To see why, consider the following consider the simple case where 2 objects
are present in the scene. Suppose that the sensors are Gaussian and unbiased,
so that

`k(y|x) = N (y|x, σ2) (4.37)

for some track variance σ2. Moreover, suppose that the sensors are character-
ized by an ideal probability of detection pD = 1 and that there are no false
measurements, so that the multimeasure yk = {y1, y2} is collected know-
ing that there are no clutter measurements inside. Suppose for simplicity
that the predicted MPDF pk|k−1({·}) is not informative, hence the corrected
MPDF pk|k({·}) is essentially the multiobject likelihood `k({·}|y) (which is
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multi-Bernoulli with two deterministic Gaussian components). Thus

pk|k(x) =



0 if x = ∅
0 if x = {x1}
N (x1| y1, σ

2)N (x2| y2, σ
2)

+N (x1| y2, σ
2)N (x2| y1, σ

2)
if x = {x1, x2}

0 otherwise

. (4.38)

In this case, the corrected PHD is

Dk|k(x) = N (x| y1, σ
2) +N (x| y2, σ

2) (4.39)

and the expected number of objects is

E[|Xk|] =

∫
Dk|k(x) dx = 2 (4.40)

so that the PHD filter produces the estimate x̂k = {x̂1, x̂2}, where x̂1 and
x̂2 are the locations of the two largest peaks of Dk|k(·). It is possible to
distinguish three different cases:

� case 1 - |y1 − y2| > 2σ: in this case both Dk|k(·) and pX({·}) are
bimodal, so that both the PHD filter and the multiobject Bayes filter
recognize two objects. More precisely, the two filters produce the same
estimate x̂k = {y1, y2};

� case 2 -
√

2σ > |y1 − y2| > 2σ: in this case Dk|k(·) is unimodal while
pX({·}) is bimodal, so the PHD filter recognizes only one object while
the multiobject Bayes filter recognizes two objects. More precisely,
the PHD filter produces the estimate x̂k = {1/2(y1 + y2)}, while the
multiobject Bayes filter produces the estimate x̂k = {y1, y2};

� case 3 - |y1 − y2| <
√

2σ: in this case both Dk|k(·) and pX({·}) are
unimodal, so both the PHD filter and the multiobject Bayes filter rec-
ognize only one object. More precisely, the PHD filter and the multi-
object Bayes filter produce the same estimate x̂k = {1/2(y1 + y2)}.

The conclusion is that, for this example, the PHD approximation is appro-
priate if and only if |y1 − y2| > 2σ. Moreover, the full multiobject Bayes
filter outperforms the PHD filter if and only if

√
2σ > |y1− y2| > 2σ. In the

third case |y1 − y2| <
√

2σ both filters cannot track the two objects present
in the scene.
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4.4.4 PHD predictor

Theorem 2. Consider the standard model and let ϕ̃k|k−1(·|w) , pS(w)ϕk|k−1(·|w)
be the ”pseudo transition density” at time k − 1. Then, given the corrected
PHD Dk−1|k−1(·), the predicted PHD is

Dk|k−1(x) = IB(x) +Dk−1|k−1[ϕ̃k|k−1(x)] (4.41)

where the following linear functional is defined

Dk−1|k−1[ϕ̃k|k−1(x)] ,
∫
ϕ̃k|k−1(x|w)Dk−1|k−1(w) dw (4.42)

Proof

The predicted PHD is given by

Dk|k−1(x) =
∂ Gk|k−1[h]

∂ {x}

∣∣∣∣
h=1

=
∂

∂ {x}
[
exp(IB[h− 1])Gk−1|k−1[1− pS + ϕ̃k|k−1[h]]

]
h=1

.

(4.43)
Then, due to the product rule, after some simple calculations it turns out
that

Dk|k−1(x) =
∂

∂ {x}
[exp(IB[h− 1])]h=1 Gk−1|k−1[1− pS + ϕ̃k|k−1[1]]+

exp(IB[1− 1])
∂

∂ {x}
[
Gk−1|k−1[1− pS + ϕ̃k|k−1[h]]

]
h=1

=
∂

∂ {x}
[exp(IB[h− 1])]h=1 +

∂

∂ {x}
[
Gk−1|k−1[1− pS + ϕ̃k|k−1[h]]

]
h=1

.

(4.44)
The first term is simply the PHD IB(·) of the birth set Bk: in fact exp(IB[h−
1]) is the PGFL of Bk, so the functional derivative restricted to h = 1 of
exp(IB[h− 1]) is the PHD of Bk, which is IB(·), i.e.

∂

∂ {x}
[exp(IB[h− 1])]h=1 = IB(x). (4.45)

For the second term, the second chain rule can be applied: define the func-
tional transformation

ϕ[h](w) , 1− pS(w) + ϕ̃k|k−1[h|w] (4.46)
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so that
Gk−1|k−1[1− pS + ϕ̃k|k−1[h]] = Gk−1|k−1[ϕ[h]]. (4.47)

The functional derivative of the second term is

∂ Gk−1|k−1[ϕ[h]]

∂ {x}

∣∣∣∣
h=1

=

∫
∂ ϕ[h](w)

∂ {x}

∣∣∣∣
h=1

∂ Gk−1|k−1[h̃]

∂ {w}

∣∣∣∣
h̃=ϕ[1]

dw (4.48)

Thanks to the linearity of the functional derivative, as well as to the constant
and linear rules, the first term under the integral is

∂ ϕ[h](w)

∂ {x}

∣∣∣∣
h=1

=
∂

∂ {x}
[
1− pS(w) + ϕ̃k|k−1[h|w]

]
h=1

= ϕ̃k|k−1(x|w) .

(4.49)
On the other hand, the second term under the integral is

∂ Gk−1|k−1[h̃]

∂ {w}

∣∣∣∣
h̃=ϕ[1]

= Dk−1|k−1(w) (4.50)

where it is exploited the fact ϕ[1](w) = 1 identically for all w ∈ Rn. Conse-
quently,

∂ Gk−1|k−1[ϕ[h]]

∂ {x}

∣∣∣∣
h=1

=

∫
ϕ̃k|k−1(x|w)Dk−1|k−1(w) dw

, Dk−1|k−1[ϕ̃k|k−1(x)]

. (4.51)

In conclusion, the predicted PHD is

Dk|k−1(x) = IB(x) +Dk−1|k−1[ϕ̃k|k−1(x)] (4.52)

as claimed.

The result can be interpreted as follows: the predicted PHD Dk|k−1(·) gets
large values in those locations x such that it is likely that an object can
appear x (i.e. IB(x) is large) or such that it is likely that a survived object
move towards (i.e. Dk−1|k−1[ϕ̃k|k−1(x)] is large). On the other hand, the
predicted PHD Dk|k−1(·) gets low values in those locations x where it is
unlikely that an object can appear and a survived object moves towards (i.e.
both IB(x) and Dk−1|k−1[ϕ̃k|k−1(x)] are small).

4.4.5 PHD corrector

Theorem 3. Consider the standard model (132) and let ˜̀
k(·|w) , pD(w) `k(·|w)

be the pseudo likelihood at time k. Moreover, assume that the predicted
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MPDF pk|k−1({·}) is Poisson for some given intensity Dk|k−1(·). Then, the
corrected PHD is

Dk|k(x) = Λ(x)Dk|k−1(x) (4.53)

where the PHD likelihood Λ(·) is defined as follows

Λ(x) , (1− pD(x)) + Λ̄(y|x) (4.54)

with

Λ̄(y|x) ,
∑
y∈y

˜̀
k(y|x)

IC(y) +Dk|k−1[˜̀k(y)]
. (4.55)

Proof

Thanks to the assumption that the predicted MPDF is Poisson, the sempli-
fication Gk|k−1[h] = exp(Dk|k−1[h−1]) holds, thus the bivariate PGFL used
in the Bayes equation takes the following simple form

Fk[h, g] = exp(IC[g − 1])Gk|k−1[h̃]h̃=h (1−pD+˜̀
k[g])

= exp(IC[g − 1]) [exp(Dk|k−1[h̃− 1])]h̃=h (1−pD+˜̀
k[g])

= exp(IC[g − 1] +Dk|k−1[h (1− pD + ˜̀
k[g])− 1]︸ ︷︷ ︸

,ι[h,g]

)
(4.56)

where the functional ι[·, ·] is introduced for the sake of notation. Given this
explicit expression for the bivariate PGFL, the corrected PHD is

Dk|k(x) =
∂ Gk|k[h]

∂ {x}

∣∣∣∣
h=1

=
∂

∂ {x}

 ∂ Fk[h,g]
∂g y

∣∣
g=0

∂ Fk[h,g]
∂g y

∣∣
h=1,g=0


h=1

. (4.57)

Notice that the denominator of the RHS does not depend on h(·) (since it
is already fixed to h = 1 before taking the derivative in {x}), thus it is a
constant functional. Consequently, thanks to the linearity of the functional
derivative, the external derivative with respect to the singleton {x} acts only
on the numerator of the RHS, i.e.

Dk|k(x) =

∂
∂ {x}

[
∂ Fk[h,g]
∂g y

∣∣
g=0

]
h=1

∂ Fk[h,g]
∂g y

∣∣
h=1,g=0

=

∂ Fk[h,g]
∂ (y∪{x})

∣∣
h=1,g=0

∂ Fk[h,g]
∂g y

∣∣
h=1,g=0

(4.58)

with the convention that the differentation ∂/∂(y ∪ {x}) is performed with
respect to h(·) when evaluated in {x} and performed with respect g(·) when
evaluated in y. At this point the problem is to compute the numerator and
the denominator of the RHS and then take their quotient.
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step 1: Computation of the denominator

The objective is to compute

∂ Fk[h, g]

∂g y

∣∣∣∣
h=1,g=0

=
∂

∂g y
[exp(ιg[h])]h=1,g=0 =

∂

∂g y
[exp(ι[g])]g=0 (4.59)

where ι[g] , ι[1, g]. Now it is convenient to compute the derivative with
respect y by increasing step by step the number of considered measurements.
Taking in mind that the differentation in y is always performed with respect
g(·), the subscript g will be omitted from the notation ∂/∂g.

� case 1: y = ∅ - trivially

∂ Fk[h, g]

∂∅

∣∣∣∣
h=1

= Fk[1, g] = exp(ι[g]) (4.60)

� case 2: y = {y1} - due to the first chain rule (82), holds

∂ Fk[h, g]

∂ {y1}

∣∣∣∣
h=1,g=0

=
∂ exp(ι[g])

∂ {y1}
=

[
d exp(ι[g])

d ι[g]

∂ ι[g]

∂ {y1}

]
g=0

. (4.61)

The first factor is trivially

d exp(ι[g])

d ι[g]
= exp(ι[g]) (4.62)

while the second factor, according to the linearity of the functional
derivative and to the linearity of the linear functional Dk|k−1[·], is

∂ ι[g]

∂ {y1}
= IC(y1) +Dk|k−1[˜̀k(y1)] . (4.63)

Hence,

∂ Fk[h, g]

∂ {y1}

∣∣∣∣
h=1

= exp(ι[g])
(
IC(y1) +Dk|k−1[˜̀k(y1)]

)
(4.64)

� case 3: y = {y1, y2} - According to the definition of iterated functional
derivative and observing that the factor(

IC(y1) +Dk|k−1[˜̀k(y1)]
)

(4.65)
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in ∂ Fk[h,·]
∂ {y1} does not depend on g(·), it holds that

∂ Fk[h, g]

∂ {y1, y2}

∣∣∣∣
h=1

=
∂ exp(ι[g])

∂ {y2}

(
IC(y1) +Dk|k−1[˜̀k(y1)]

)
= exp(ι[g])

2∏
i=1

(
IC(yi) +Dk|k−1[˜̀k(yi)]

). (4.66)

The previous result suggest the following general formula

∂ Fk[h, g]

∂ y

∣∣∣∣
h=1,g=0

= exp(ι[g])
∏
y∈y

(
IC(y) +Dk|k−1[˜̀k(y)]

)
(4.67)

which can be proved by the induction y = {y1, . . . , yi} → y = {y1, . . . , yi+1}.
Setting g = 0 yields to the final expression of the denominator

∂ Fk[h, g]

∂ y

∣∣∣∣
h=1,g=0

= exp(ι[0])
(
IC +Dk|k−1[˜̀k]

)y
. (4.68)

step 2: Computation of the numerator

The objective is to compute

∂ Fk[h, g]

∂ (y ∪ {x})

∣∣∣∣
h=1,g=0

=
∂ exp(ιg[h])

∂ (y ∪ {x})

∣∣∣∣
h=1,g=0

=
∂

∂ y

[
∂ exp(ιg[h])

∂ {x}

∣∣∣∣
h=1

]
g=0

.

(4.69)
Hence, the functional derivative in (191) is splitted in two different func-
tional derivatives: the former is in {x} while the latter is in y. Note that,
since the differentation is order invariant, it is also possible to perform the
differentation by taking first the derivative in y and then in {x}, but this
strategy leads to more complicated computations, hence is not considered in
what follows.

Derivative with respect to {x}

Recall the fact that the differentation in {x} acts only on the test function
h(·), while the differentation in y acts only on the test function g(·). In other
words, the two differentations behave like two partial differentations. Given
this fact and according to the first chain rule, the differentation in {x} yields
to

∂ exp(ιg[h])

∂ {x}
=

d exp(ιg[h])

d ιg[h]

∂ ιg[h]

∂ {x}
= exp(ιg[h])

∂ ιg[h]

∂ {x}
. (4.70)
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The second factor in the RHS, by linearity, is

∂ ιg[h]

∂ {x}
=
(

1− pD(x) + ˜̀
k[g|x]

)
Dk|k−1(x) . (4.71)

Consequently, it follows that

∂ exp(ιg[h])

∂ {x}
= exp(ιg[h])

(
1− pD(x) + ˜̀

k[g|x]
)
Dk|k−1(x). (4.72)

Now, setting h = 1, leads to

∂ exp(ιg[h])

∂ {x}

∣∣∣∣
h=1

= exp(ι[g])
(

1− pD(x) + ˜̀
k[g|x]

)
Dk|k−1(x) (4.73)

Derivative with respect to y

At this point it remains to evaluate the functional derivative in y of . To
this end, repeat the procedure used to compute the denominator in (1.58).

� case 1: y = ∅ - Trivially

∂ Fk[h, g]

∂ (∅ ∪ {x})

∣∣∣∣
h=1

=
∂

∂∅

[
∂ exp(ιg[h])

∂ {x}

∣∣∣∣
h=1

]
=
∂ exp(ιg[h])

∂ {x}

∣∣∣∣
h=1

= exp (ι[g])
(

1− pD(x) + ˜̀
k[g|x]

)
Dk|k−1(x)

(4.74)

� case 2: y = {y1} - By linearity and according to the product rule, it
holds that

∂ Fk[h, g]

∂ ({y1} ∪ {x})

∣∣∣∣
h=1

=
∂

∂ {y1}

[
∂ exp(ιg[h])

∂ {x}

∣∣∣∣
h=1

]
=

∂

∂ {y1}

[
exp (ι[g])

(
1− pD(x) + ˜̀

k[g|x]
)
Dk|k−1(x)

]
=

∂

∂ {y1}

[
exp (ι[g])

(
1− pD(x) + ˜̀

k[g|x]
)]

Dk|k−1(x)

= exp(ι[g])T [g]Dk|k−1(x)
(4.75)

where, in order to simplify the notation, the following functional is
defined

T [g] , (IC(y1) +Dk|k−1[˜̀k(y1)])
(

1− pD(x) + ˜̀
k[g|x]

)
+ ˜̀

k(y1|x)

(4.76)
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� case 3: y = {y1, y2} - According to the definition of iterated functional
derivative, holds

∂ Fk[h, g]

∂ ({y1, y2} ∪ {x})

∣∣∣∣
h=1

=
∂

∂ {y2}

[
∂ Fk[h, g]

∂ ({y1} ∪ {x})

∣∣∣∣
h=1

]
=

∂

∂ {y2}
[
exp(ι[g])T [g]Dk|k−1(x)

]
=
∂ exp(ι[g])T [g]

∂ {y2}
Dk|k−1(x)

= exp(ι[g])

(
U [g] +

∂ T [g]

∂{y2}

)
Dk|k−1(x)

(4.77)

where the shorthand U [·] is defined as follows

U [g] =

(
2∏
i=1

(IC(yi) +Dk|k−1[˜̀k(yi)])

)
(1− pD(x) + ˜̀

k[g|x])

+ (IC(y2) +Dk|k−1[˜̀k(y2)])˜̀
k(y1|x)

(4.78)

and
∂ T [g]

∂{y2}
= (IC(y1) +Dk|k−1[˜̀k(y1)]) ˜̀

k(y2|x) . (4.79)

Now focus on the sum U [g] + ∂ T [g]
∂{y2} , which is

U [g] +
∂ T [g]

∂{y2}
=

(
2∏
i=1

(IC(yi) +Dk|k−1[˜̀k(yi)])

)
(1− pD(x) + ˜̀

k[g|x])

+ (IC(y2) +Dk|k−1[˜̀k(y2)])˜̀
k(y1|x)

+ (IC(y1) +Dk|k−1[˜̀k(y1)]) ˜̀
k(y2|x)

.

(4.80)
The sum, say S, of the second and third terms can be written in the
following form

S =

(
2∏
i=1

(IC(yi) +Dk|k−1[˜̀k(yi)])

)[ ˜̀
k(y1|x)

IC(y1) +Dk|k−1[˜̀k(y1)])

+
˜̀
k(y2|x)

IC(y2) +Dk|k−1[˜̀k(y2)])

]

=

(
2∏
i=1

(IC(yi) +Dk|k−1[˜̀k(yi)])

)(
2∑
i=1

˜̀
k(yi|x)

IC(yi) +Dk|k−1[˜̀k(yi)])

).

(4.81)
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Hence it follows that

∂ Fk[h, g]

∂ ({y1, y2} ∪ {x})

∣∣∣∣
h=1

= exp(ι[g])

(
2∏
i=1

(IC(yi) +Dk|k−1[˜̀k(yi)])

)

×

(
(1− pD(x) + ˜̀

k[g|x]) +

2∑
i=1

˜̀
k(yi|x)

IC(yi) +Dk|k−1[˜̀k(yi)])

)
×Dk|k−1(x)

(4.82)

The previous results suggest the following general formula

∂ Fk[h, g]

∂ (y ∪ {x})

∣∣∣∣
h=1

= exp(ι[g])

(∏
y∈y

(IC(y) +Dk|k−1[˜̀k(y)])

)

×

(
(1− pD(x) + ˜̀

k[g|x]) +
∑
y∈y

˜̀
k(y|x)

IC(y) +Dk|k−1[˜̀k(y)]

)
×Dk|k−1(x)

(4.83)
which can be proved by the induction y = {y1, . . . , yi} → y = {y1, . . . , yi+1}.
Setting g = 0 yields to the final expression

∂ Fk[h, g]

∂ (y ∪ {x})

∣∣∣∣
h=1

= exp(ι[g])

(∏
y∈y

(IC(y) +Dk|k−1[˜̀k(y)])

)

×

(
(1− pD(x)) +

∑
y∈y

˜̀
k(y|x)

IC(y) +Dk|k−1[˜̀k(y)]

)
×Dk|k−1(x)

. (4.84)

step 3: Final result

By dividing (1.68) with (1.84), it turns out, as claimed, that

Dk|k(x) =

(
(1− pD(x)) +

∑
y∈y

˜̀
k(y|x)

IC(y) +Dk|k−1[˜̀k(y)]

)
Dk|k−1(x)

= Λ(x)Dk|k−1(x)

(4.85)

where the PHD likelihood Λ(·) is defined as follows

Λ(x) , (1− pD(x)) + Λ̄(y|x) (4.86)
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with

Λ̄(y|x) ,
∑
y∈y

˜̀
k(y|x)

IC(y) +Dk|k−1[˜̀k(y)]
. (4.87)

The result can be interpreted as follows: the corrected PHD Dk|k(·) gets high
values in those location x where the sensors are blind (i.e. the probability of
miss detection 1 − pD(x) is high) or where are near at least to one reliable
measure y (i.e. Λ̄(x) is high). A measurement y is reliable in x if and only
if:

� the pseudo likelihood ˜̀
k(y|x) , pD(x) `k(y|x) is large, i.e. if the spot x

is well observed by the sensors (pD(x) is large) and the measurement
y is actually near (according to the intensity of the sensor noise) the
spot x (`k(y|x) is large);

� it is likely that the measurement is generated by an object and not by
clutter (i.e. IC(y) is small with respect to

Dk|k−1[˜̀k(y)] ,
∫

˜̀
k(y|w)Dk|k−1(w) dw (4.88)

which is a pseudo expected value of ˜̀
k(y|X) weighted by Dk|k−1(x)

and thus a sort of estimate of the event ’y is generated by an object’).

On the other hand, the corrected PHD Dk|k(·) gets low values in those
location x that are far from any reliable measurement.

4.5 Gaussian mixture PHD filter

4.5.1 PHD filter implementations

There are two ways to translate the standard PHD filter in an algorithm
executable by a computer.

1. Particle approximation: the idea is to approximate the predicted
and the corrected PHDs as linear combinations of delta densities, i.e.

Dk|k−1(x) ≈
ν∑
i=1

wik|k−1 δxik|k−1
(x) Dk|k(x) ≈

ν∑
i=1

wik|k δxik|k(x)

(4.89)
for suitable sets of predicted particles {wik|k−1, x

i
k|k−1}

ν
i=1 and cor-

rected particles {wik|k, x
i
k|k}

ν
i=1, which are computed according to the
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prediction and correction steps of the PHD filter. Note that the PHDs
are not normalized functions, so the importance weights wik|k−1,wik|k
does not sum to the unity but rather to Nk|k−1, Nk|k (thus, the ap-
proximation is not a mixture of deltas but a linear combination, with
non-negative coefficients, of deltas).

The resulting algorithm is called Sequential Monte Carlo PHD filter
(SMC-PHD filter).

The SMC-PHD filter leads to good performance if the number of par-
ticles ν (which is usually fixed in time) is sufficiently large. Here the
term large strongly depends on the SNR, the dimension of the object
states and the number of tracked objects. Tipically the SMC-PHD
filter is computationally demanding because the number of particles ν
involved is large.

2. Gaussian mixture approximation: the idea is to approximate the
predicted and corrected PHDs as linear combinations of Gaussian func-
tions

Dk|k−1(x) ≈
νk|k−1∑
i=1

wik|k−1N (x;xik|k−1, P
i
k|k−1)

Dk|k(x) ≈
νk|k∑
i=1

wik|kN (x;xik|k, P
i
k|k)

(4.90)

for suitable sets of predicted Gaussian components

{wik|k−1, (x
i
k|k−1, P

i
k|k−1)}νk|k−1

i=1 (4.91)

and corrected Gaussian components

{wik|k, x
i
k|k, P

i
k|k)}νk|ki=1 (4.92)

which are computed according the prediction and correction steps of
the PHD filter. Once again, the importance weights sum to Nk|k−1

and Nk|k, thus the term Gaussian mixture is used improperly as a
shorthand for linear combination of Gaussians.

The resulting algorithm is called Gaussian mixture PHD filter (GM-
PHD filter).

For an individual element of the mixture, in principle, the GM-PHD is
more computational demanding than the SMC-PHD filter since it re-
quires the computation of the additional parameters P ik|k−1, P ik|k (the

predicted and corrected covariances of the Gaussian kernels). However
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in general the GM-PHD achieves good performance for relatively small
number of Gaussian components νk|k−1, νk|k (note that now these num-
bers are not fixed in time) with respect to the number of particles ν
required by the SMC-PHD filter. Moreover, the GM-PHD filter makes
some particular assumptions that allows to compute algebraically the
predicted and corrected parameters of the Gaussian kernels by means of
a standard Kalman filter (thus, with a very simple procedure). Hence,
the GM-PHD filter tends to be less computationally demanding than
the SMC-PHD filter, but, due to its additional assumptions, turns out
to be more restrictive than the SMC-PHD filter.

The focus of this thesis is on the GM-PHD filter, which will be derived in
what follows. Both the GM-PHD predictor and the GM-PHD corrector rely
on the following well-known result about the product of Gaussian PDFs

Theorem 4. (Foundamental Gaussian identity) - Let C be a p× n matrix
with p ≤ n, let R and P be p× p and n× n covariance matrices, then

N (y;Cx,R)N (x; x̂, P ) = N (y; ŷ;S)N (x; Ω−1 q,Ω−1) (4.93)

where S, ŷ are given by the Kalman predictor (standard form) while Ω, q
are given by the Kalman corrector (information form)

S , R+ CPC ′

ŷ , Cx̂

Ω , P−1 + C ′R−1 C

q , P−1x̂+ C ′R−1 y
(4.94)

4.5.2 GM-PHD predictor

Theorem 5. Consider the following assumptions:

� the corrected PHD is a Gaussian mixture of the following type

Dk−1|k−1(x) =

νk−1|k−1∑
i=1

wik−1|k−1N (x;xik−1|k−1, P
i
k−1|k−1) (4.95)

� the single-object motion model is linear-Gaussian, i.e. Xk+1 = AkXk+
Wk with Wk ∼ N (0, Qk), thus the transition density considered is of
the form

ϕk|k−1(x|w) = N (x;Ak w,Qk) (4.96)

� the survival probability is constant all over the surveilled scene, i.e.

pS(x) = pS ∀x ∈ Rn (4.97)
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� the PHD of the birth set is a ”Gaussian mixture” of the following type

IB,k(x) =

bk∑
i=1

βikN (x;xiB;Bik) (4.98)

Then, the predicted PHD is still a ”Gaussian mixture”, more precisely

Dk|k−1(x) = IB,k(x) +

νk−1|k−1∑
i=1

wik|k−1N (x;xik|k−1, P
i
k|k−1) (4.99)

where the number of predicted Gaussian components is νk|k−1 = bk+νk−1|k−1

and for every survived Gaussian component, i.e. for i = 1, 2, . . . , νk−1|k−1,
the following facts hold:

� the predicted weight is given by

wik|k−1 = pS w
i
k−1|k−1 (4.100)

� the parameters of the Gaussian kernel are given by the Kalman pre-
dictor which, in standard form, are the followings

xik|k−1 = Ak xk−1|k−1

P ik|k−1 = Ak P
i
k−1|k−1A

′
k +Qk

(4.101)

Proof

The theorem is proved if and only if

Dk−1|k−1[ϕ̃k|k−1(x)] =

νk|k−1∑
i=1

wik|k−1N (x;xik|k−1, P
i
k|k−1). (4.102)

In order to do that, observe that the pseudo-transition density is

ϕ̃k|k−1(x|w) = pS ϕk|k−1(x|w) = pSN (x;Ak w,Qk). (4.103)

As a consequence, it holds that

Dk−1|k−1[ϕ̃k|k−1(x)] ,
∫
ϕ̃k|k−1(x|w)Dk−1|k−1(w) dw

,

νk−1|k−1∑
i=1

wik|k−1

∫
N (x;Ak w,Qk)N (w;xik−1|k−1, P

i
k−1|k−1) dw

(4.104)
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where wik|k−1 , pS w
i
k−1|k−1. Now, for the fundamental Gaussian identity,

it general holds that

N (x;Ak w,Qk)N (w;xik−1|k−1, P
i
k−1|k−1) = N (x;xik|k−1;P ik|k−1)N (w;µ; Σ)

(4.105)
for some suitables moments µ, Σ and for xik|k−1, P ik|k−1 given by the Kalman
predictor

xik|k−1 , Akx
i
k−1|k−1

P ik|k−1 , Ak P
i
k−1|k−1A

′
k +Qk

. (4.106)

Thus, in conclusion, it follows that the PHD of survived objectsDk−1|k−1[ϕ̃k|k−1(x)]
simplifies to

Dk−1|k−1[ϕ̃k|k−1(x)] =

νk−1|k−1∑
i=1

wik|k−1N (x;xik|k−1;P ik|k−1)

∫
N (w;µ; Σ) dw︸ ︷︷ ︸

=1

=

νk−1|k−1∑
i=1

wik|k−1N (x;xik|k−1;P ik|k−1)

(4.107)
as claimed.

4.5.3 GM-PHD corrector

Theorem 6. Consider the following assumptions:

� the predicted PHD is a ”Gaussian mixture” of the following form

Dk|k−1(x) =

νk|k−1∑
i=1

wik|k−1N (x;xik|k−1, P
i
k|k−1) (4.108)

� the single-object measurement model is linear-Gaussian, i.e. Yk =
CkXk + Vk with Vk ∼ N (0, Rk), thus the considered likelihood is of
the form

`k(y|w) = N (y;Ck w,Rk) (4.109)

� the detection probability is constant all over the surveilled scene, i.e.

pD(x) = pD ∀x ∈ Rn. (4.110)
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Then, by denoting yk = {y1, . . . , ymk}, the corrected PHD is

Dk|k(x) =

νk|k−1∑
i=1

wik|kN
(
x;xik|k, P

i
k|k

)
+

νk|k−1∑
i=1

mk∑
j=1

wi,jk|kN
(
x;xi,jk|k, P

i
k|k

)
(4.111)

where the number of corrected Gaussian components is νk|k = νk|k(1 +mk)
and for every predicted component i = 1, 2, . . . , νk|k and for every measure-
ment j = 1, 2, . . . ,mk, the following facts hold:

� the corrected weights are given

– for the undetected objects, by

wik|k , (1− pD)wik|k−1 (4.112)

– for the detected objects, by

wi,jk|k ,
pD w

i
k|k−1 N

(
yj ; ŷ

i
k|k−1, S

i
k

)
IC(yj) +

∑νk|k−1

ι=1 pD wιk|k−1N
(
yj ; yιk|k−1;Sιk

) (4.113)

where ŷik|k−1, Sik|k−1 are given by the Kalman predictor, i.e. in
standard form

Sik , Rk + CkP
i
k|k−1C

′
k

ŷik|k−1 , Ckx
i
k|k−1

(4.114)

� the corrected parameters of the Gaussian kernels are given

– for the undetected objects, by the predicted parameters (≡ correc-
tion bypassed)

P ik|k , P
i
k|k−1

xik|k , x
i
k|k−1

(4.115)

– for the detected objects, by the Kalman corrector, i.e. in standard
form

Lik , P
i
k|k−1C

′
k

(
Sik
)−1

P ik|k , (I − LikCk)P ik|k−1

xi,jk|k , x
i
k|k−1 + Lik(yj − ŷjk|k−1)

(4.116)

Proof
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The objective is to compute the PHD correction step under the actual sim-
plifying assumptions. First of all, trivially, since the probability of detection
is constant and the notation considered to express the multimeasurement is
yk = {y1, . . . , ymk}, it holds that

Dk|k(x) =

(1− pD) +

mk∑
j=1

pD `k(yj |x)

IC(yj) +Dk|k−1[pD `k(yj)]

 Dk|k−1(x)

= (1− pD)Dk|k−1(x)︸ ︷︷ ︸
,DD

k|k−1
(x)

+

mk∑
j=1

pD `k(yj |x)

IC(yj) + pDDk|k−1[`k(yj)]
Dk|k−1(x)︸ ︷︷ ︸

,DD
k|k−1

(x)

(4.117)
the corrected PHD Dk|k(·) thus is given by the sum of two distinct PHDs:
the PHD of undetected objects DND

k|k−1(·) and the PHD of detected objects

DD
k|k−1(·).

Undetected objects PHD

Recalling the Gaussian form of the predicted PHD yields to

DND
k|k (x) = (1− pD)

(νk|k−1∑
i=1

wik|k−1N (x;xik|k−1, P
i
k|k−1)

)

=

νk|k−1∑
i=1

wik|kN (x;xik|k, P
i
k|k)

(4.118)

where are defined the undetected parameters as follows

wik|k , (1− pD)wik|k−1

P ik|k , P
i
k|k−1

xik|k , x
i
k|k−1

. (4.119)
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Detected objects PHD

The Gaussian form of the predicted PHD implies

DD
k|k(x) =

mk∑
j=1

pD `k(yj |x)

IC(yj) + pDDk|k−1[`k(yj)]

(νk|k−1∑
i=1

wik|k−1N (x;xik|k−1, P
i
k|k−1)

)

=

νk|k−1∑
i=1

mk∑
j=1

pD w
i
k|k−1

IC(yj) + pDDk|k−1[`k(yj)]
`k(yj |x)N (x;xik|k−1, P

i
k|k−1)

.

(4.120)
By exploiting the Gaussian form of the likelihood and according to the
foundamental Gaussian identity, the kernel of the PHD can be written in
the following equivalent form

`k(yj |x)N
(
x;xik|k−1, P

i
k|k−1

)
= N (yj ;Ckx,Rk) N

(
x;xik|k−1, P

i
k|k−1

)
= N (yj ;Ckx,Rk) N

(
x;xi,jk|k−1, P

i
k|k−1

)
(4.121)

where ŷik|k−1, Sik are given by the Kalman predictor

Sik , Rk + CkP
i
k|k−1C

′
k

ŷik|k−1 , Ckx
i
k|k−1

(4.122)

while P ik|k, xi,jk|k are given by the Kalman corrector (in the standard correction

gain form), i.e.

Lik , P
i
k|k−1C

′
k

(
Sik
)−1

P ik|k , (I − LikCk)P ik|k−1

xi,jk|k , x
i
k|k−1 + Lik(yj − ŷjk|k−1)

(4.123)

hence it turns out that

DD
k (x) =

νk|k−1∑
i=1

mk∑
j=1

pD w
i
k|k−1N

(
yj ; ŷ

i
k|k−1, S

i
k

)
IC(yj) + pDDk|k−1[`k(yj)]

N
(
x;xi,jk|k−1, P

i
k|k−1

)
(4.124)

Now focus on the linear functional Dk|k−1[`k(yj)]. Recalling the Gaussian
forms for the predicted PHD Dk|k−1(·) and for the likelihood `k(·|w), it holds
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that

Dk|k−1[`k(yj)] ,
∫
`k(yj |w)Dk|k−1(w) dw

=

νk|k−1∑
ι=1

wιk|k−1

∫
N (y;Ckw,Rk) N

(
w;xιk|k−1, P

ι
k|k−1

)
dw

.

(4.125)
Once again, according to the fundamental Gaussian identity, the integrand
can be written in the form

N (y;Ckw,Rk) N
(
w;xιk|k−1, P

ι
k|k−1

)
= N

(
y; ŷιk|k−1, S

ι
k

)
N (w;µιW , P

ι
W )

(4.126)
where µiW , P iW are suitable moments, thus

Dk|k−1[`k(yj)] =

νk|k−1∑
ι=1

wιk|k−1

∫
N
(
y; ŷιk|k−1, S

ι
k

)
N (w;µιW , P

ι
W ) dw

=

νk|k−1∑
ι=1

wιk|k−1N
(
y; ŷιk|k−1, S

ι
k

) .

(4.127)
Consequently the detected PHD gets the form

DD
k (x) ,

νk|k−1∑
i=1

mk∑
j=1

wi,jk|kN
(
x;xi,jk|k−1, P

i
k|k−1

)
(4.128)

where the corrected weights are defined as

wi,jk|k ,
pD w

i
k|k−1N

(
yj ; ŷ

i
k|k−1, S

i
k

)
IC(yj) +

∑νk|k−1

ι=1 pD wιk|k−1N
(
yj ; ŷιk|k−1, S

ι
k

) (4.129)

Final result

Finally, by summing DND
k (·) and DD

k (·), it turns out that

Dk|k(x) =

νk|k−1∑
i=1

wik|kN
(
x;xik|k, P

i
k|k

)
+

νk|k−1∑
i=1

mk∑
j=1

wi,jk|kN
(
x;xi,jk|k, P

i
k|k

)
(4.130)

as claimed.
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4.5.4 Postprocessing

The number of predicted hypotheses is νk|k−1 = bk + νk−1|k−1, thus grows
exponentially in time. In the same way, the number of corrected hypotheses
is νk|k = νk|k−1(1+mk), wich grows exponentially in time (even more rapidly
then νk|k−1). In order to mantain the algorithm computationally feasible,
particular techniques are employed after the prediction and correction steps
of the GM-PHD filter to limit νk|k−1 and νk|k below a desidered treshold
νmax . Assume that the corrected or predicted hypotheses are in the form

{(wi, xi, P i)}νi=1 (4.131)

Such techniques are essentially the following three (performed in the same
order as presented below):

� Pruning: The irrelevant hypothesis are discharged. Here irrelevant
means that the relative weight of an hypothesis is smaller than a preset
threshold.

if wi < γ1 then (wi, xi, P i) is eliminated (4.132)

Note that the weights, since they sum to a quantity that it is not
necessarily the unity, don’t need to be normalized to the unity after
the pruning of the irrelevant hypotheses. Rather, if one doesn’t want
to loose the information about the volume of the PHD then the weights
can be renormalized to the value of the volume of not pruned.

� Merging: if two or more hypotheses are similar then they can be
approximated with a suitable unique hypothesis. More precisely, here
similar means that if the merging distance1 between two hypothesis
i, j

d(i, j) , ||xi − xj ||2P i (4.133)

is smaller than a preset threshold then the hypotheses i, j are merged
into a new single hypothesis k

if d(i, j) < γ2 then (wi, xi, P i), (wk, xk, P k) are replaced by (wk, xk, P k)
(4.134)

1This is not a distance because, due to the weight matrix P i, is not symmetric:
d(i, j) 6= d(j, i). However, if i and j are corrected hypotheses for detected objects then the
covariances P i, P j are the same and the term merging distance d(i, j) assumes the real
meaning of distance
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where the merged hypothesis is defined as follows

wk , wi + wj

xk ,
wixi + wjxj

wi + wj

P k ,
wiP i + wjP j

wi + wj
+ (xi − xj)(xi − xj)′

(4.135)

� Capping: If after the pruning and the merging procedures the number
of hypotheses is still too large, then only the νmax most relevant hy-
potheses are kept in the PHD. More precisely, suppose that the pruning
and merging procedure reduces the number of hypotheses from ν to
ν′ < ν, but still is ν′ > νmax. Suppose to have ordered the weights
from the bigger, w1, to the smallest, wν

′
. Then, the capping procedure

defines the post-processed PHD as

D(x) ,
νmax∑
i=1

wiN (x;xi, P i) if ν′ > νmax. (4.136)

On the other hand, if ν′ ≤ νmax then, naturally, all hyphotheses are
kept in the PHD, i.e.

D(x) ,
ν′∑
i=1

wiN (x;xi, P i) if ν′ ≤ νmax (4.137)

4.5.5 Estimate extraction

After the post-processing of the corrected PHD, one can extract the estimate
x̂k of the actual object set Xk. The estimation procedure, which is an heuris-
tic (i.e. is not Bayes-optimal) that resembles a sort of MAP estimation,
operates as follows:

� step 1: Estimate the actual number of objects Nk present in the scene
as

N̂k , Ek|k[|Xk|] ,
∫
Dk|k(x) dx

=

∫ (νk|k∑
i=1

wik|kN (x;xik|k, P
i
k|k)

)
dx

=

νk|k∑
i=1

wik|k

∫
N (x;xik|k, P

i
k|k) dx︸ ︷︷ ︸

=1

=

νk|k∑
i=1

wik|k

(4.138)
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� step 2: Given N̂k, define the estimate as the locations of the N̂k largest
peaks of the corrected PHD Dk|k(·). Due to the Gaussian represen-
tation, if the weights are ordered from the bigger to the smaller then

such locations are x1
k|k, . . . , xN̂kk|k, then the estimate is

x̂k = {xik|k}
N̂k|k
i=1 . (4.139)

Note that the Gaussian representation provides a natural representa-
tion of the uncertantly affecting the single-object estimates xik|k, which

is the relative covariance matrix P ik|k.
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Chapter 5

Extended object PHD filter
theory

5.1 Summary

In this chapter the PHD filter for extended object is derived. As mentioned
before, the unique difference between the standard PHD filter and the ex-
tended object PHD filter is in the measurement model, whereas the extended
object PHD filter does not consider the single-measure semplification. Due
to this fact, the corrected PHD computed by the extended object PHD gets
an expression that is more complex than the expression of the corrected
PHD computed by the standard object PHD. In particular, the new cor-
rected PHD now depends on the partitions of the set of measures and this
opens a new clustering problem. The chapter is structured as follows

� in the first part some essential concepts about the partitions of a finite
sets are briefly discussed;

� then the measurement model for extended object is introduced in its
exact definition and in its approximation, called approximate Poisson
body (APB) model, that permits to obtain closed formulae;

� finally the new PHD corrector is derived and, after that, also the rela-
tive Gaussian mixture implementation is discussed. Moreover, a simple
and effective clustering algorithm is given.

81
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5.2 Partition of a finite set

5.2.1 Definition

Definition 6. Let x = {x1, . . . , xη} be a finite set on Rn. A partition P of
the finite set x is a set of the form

P = {w1,w2, . . . ,w|P|} (5.1)

where w1, w2, . . . , w|P| are subsets of x, called cells of P, such that:

1. every cell is not empty, i.e. wp 6= ∅ for all p = 1, 2, . . . , |P|;

2. every cell is disjoint from the others, i.e. wi ∩ wj = ∅ if i 6= j;

3. the union of the cells gives the starting set x, i.e.
⋃|P|
p=1 wp = x.

Given a finite set x = {x1, . . . , xη}, there are two particular partitions of x:

the minimal partition, wich is composed by only 1 cell w1 , x

P , {x} (5.2)

and the maximal partition, which is composed by |x| = η cells w1 , {x1},
. . . , wη , {xη}

P , {{x1}, . . . , {xη}} (5.3)

The minimal partition is the partition of x with smallest cardinality (mini-
mum number of different cells), while the maximal partition is the partition
of x with greatest cardinality (maximum number of different cells), thus in
general hold for a generic partition P

1 ≤ |P| ≤ |x| (5.4)

the intuition suggests that there is only one minimal partition and only
one maximal partition. On the other hand, it is possible to find different
partitions with a cardinality that it is not maximal or minimal.

Two relevant problems regarding the partition of a finite set are: 1) given
a finite set, count the number of its possible partitions; 2) given a finite set,
find a systematic way to list its partitions. These two problems will be
addressed in what follows.
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5.2.2 Number of partitions of a finite set

The number of different partitions that is possible construct from a finite
set x is given by the so called Bell number B|x| of order |x|. Such number is
defined by the recursion

Bi+1 ,
i∑

j=0

(
i

j

)
Bj (5.5)

initialised by B1 , 1.

Observation 1. The function i 7→ Bi grows rapidly, for example the first
eight Bell numbers are

B1 = 1 B2 = 2 B3 = 5 B4 = 15
B5 = 52 B6 = 203 B7 = 877 B8 = 4140

. (5.6)

In comparision, the first eight outcomes of the exponential function i 7→ 2i

are
21 = 2 22 = 4 23 = 8 24 = 16
25 = 32 26 = 64 27 = 128 28 = 256

(5.7)

while the first eight outcome of the factorial function i 7→ i! are

1! = 1 2! = 2 3! = 6 4! = 24
5! = 120 6! = 720 7! = 5040 8! = 40320

. (5.8)

A more convenient way to compute the Bell numbers is the following

Bi =

i∑
j=1

Si,j (5.9)

where Si,j is the so called Stirling number of the second kind of order i, j,
and is given by

Si,j ,
1

j!

j∑
η=0

(−1)η
(
j

η

)
(j − η)i. (5.10)

The Stirling number Si,j counts the number of different partitions with |P| =
j cells that is possible to construct from a finite set with |x| = i elements.
Thus, equation (12) states simply that the total number of partitions is the
sum of the number of partitions with 1 cell (which is one according to the
intuition), the number of partitions with 2 cells, . . . , the number of partitions
with i cells (which is one according to the intuition).
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One can show that the Stirling numbers satisfy the recursion

Si+1,j = Si,j−1 + j Si,j . (5.11)

As a consequence, the Bell numbers can be computed also with the following
recursion

Bi+1 = Bi +

i∑
j=1

j Si,j . (5.12)

To see why, consider

Bi+1 =

i+1∑
j=1

Si+1,j =

i+1∑
j=1

(Si,j−1 + j Si,j)

=

i+1∑
j=1

Si,j−1 +

i+1∑
j=1

j Si,j

. (5.13)

Now, by defining Si,0 , 0 for all i (≡ the empty set is not a partition of a

finite set) and by defining Si,j , 0 for all j > i (≡ the maximal cardinality
of a partition is the cardinality of the considered finite set), it holds that

Bi+1 =

i+1∑
j=2

Si,j−1 +

i∑
j=1

j Si,j =

i∑
j=1

Si,j +

i∑
j=1

j Si,j = Bi +

i∑
j=1

j Si,j

(5.14)

5.2.3 Listing partitions

There is a simple recursive procedure to list every partition of a finite set x =
{x1, . . . , xη}. Before tackling the problem, consider the simpler sub-problem
of finding all partitions of a generic subset x′′ = {x1, . . . , x|x′′|} ⊂ x given the
partitions of the ”1 singleton predecessor” x′ ⊂ x′′ where |x′| = |x′′| − 1.

Such sub-problem is resolved by the following two-step procedure:

� step 1: for each partition P ′ of x′ append the singleton cell w′′ , {xj}
to get the partitions of x′′

P ′′1 , P ′ ∪ w′′ = P ′ ∪ {xj} (5.15)

� step 2: for each partition P ′ of x′ and each cell w′ ∈ P ′ of the partition
P ′ considered, replace the cell w′ with the new cell w′∪w′′ = w′∪{xj}
to get the remaing partitions of x′′

P ′′2 , (P ′ \ w′) ∪ (w′ ∪ w′′) = (P ′ \ w′) ∪ (w′ ∪ {xj}) (5.16)
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It is clear that the step 1 and step 2 in general produce different partitions
of the new finite set x′′. Moreover, step 1 and step 2 exhausts all of the
partitions of the new finite set x′′ because they result in exactly B|x′′| different
partitions of x′′, which is the total number of partition of x′′.

Theorem 7. Step 1 and step 2 produces all the B|x′′| partitions of the finite

set x′′ , x′ ∪ {xj}.

Proof

To see why this fact holds, consider the number of partition generated by
step 1 and step 2

Bstep 1,step 2 , Bstep 1 +Bstep 2 (5.17)

where Bstep 1 is the number of partitions generated by step 1 and Bstep 2 is
the number of partitions generated by step 2.

Trivially, the number of partitions generated by step 1 is equal to the
number of the given partions, thus

Bstep 1 = B|x′| (5.18)

On the other hand, finding the number of partitions generated by step 2 is
more complicated.

Consider the minimal partition of the given set of partitions. Such par-
tition contains only 1 cell (which is w′ = x′) and step 2 produces for this
partition 1 new partition. Thus let

Bstep 2,1 cell , 1 (5.19)

be the number of new partition generated by step 2 in this first case. Now
consider the partitions with 2 cells of the given set of partitions. For each
of theese partitions, step 2 produces 2 new partitions. Since there are S|x′|,2
different partitions of x′ with 2 cells, the total number of new partitions
generated by step 2 in this case is

Bstep 2,2 cells , 2S|x′|,2 (5.20)

With the same reasoning, consider the partitions with 3 cells of the given set
of partitions. For each of these partitions, step 2 produces 3 new partitions.
There are S|x′|,3 different partitions of x′ with 3 cells, so

Bstep 2,3 cells , 3S|x′|,3 (5.21)
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At this point it is clear that step 2, when considering partitions with j cells
of the given set of partitions, generates

Bstep 2,j cells , j S|x′|,j (5.22)

new partitions. The total number of new partitions generated by step 2 is
consequently

Bstep 2 =

|x′|∑
j=1

Bstep 2,j cells =

|x′|∑
j=1

j S|x′|,j (5.23)

where it is noted that S|x′|,1 = 1 (≡ there is only one maximal partition),
thus Bstep 2,1 cell = 1S|x′|,1. As a consequence,

Bstep 1,step 2 = B|x′| +

|x′|∑
j=1

j S|x′|,j (5.24)

from which follows that

Bstep 1,step 2 = B|x′|+1 = B|x′′| (5.25)

so, as claimed, step 1 and step 2 exhaust all the partitions of the new finite
set x′′.

5.3 Measurement models for extended objects

5.3.1 Single extended object

The key concept used to generalize the standard model to extended objects
is that an extended object, if detected, produces a finite set of measurements
scattered around its surface. A single measurement can be seen as the result
of the detection of a single reflecting point Xe

k, which behaves like a point-
object in the standard measurement model, belonging to the edge of the
extended object surface.

Thus, if Xk is the state of a single extended object (that is the centroid of
the object) then the extended object is modelled as the collection of reflection
points

Xk +X1
k , . . . , Xk +X

E(Xk)
k (5.26)

disposed around the centroid Xk. Note that the number of reflection points
E(X) can vary during the time with Xk. Abbreviate the probability of
detection of the reflection point X +Xe as

peD(Xk) , pD(Xk +Xe
k) ∀ e = 1, 2, . . . , E(Xk) (5.27)
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and in the same way abbreviate the likelihood to observe a measurement Yk
if the reflection point considered is Xk +Xe

k as

`ek(Yk|Xk) , `k(Yk|Xk +Xe
k) ∀ e = 1, 2, . . . , E(Xk). (5.28)

Then, the set of measurements generated by an extended object Xk is mod-
elled as

h(Xk) ,
E(Xk)⋃
e=1

he(Xk) (5.29)

where he(Xk) is a Bernoulli RFS with parameters peD(Xk) and `ek(·|Xk).
Assuming independence between Bernoulli components, the PGFL of the
set of detections generated by the extended object X is

GD
k [h|Xk] ,

E(Xk)∏
e=1

(
1− peD(Xk) + ˜̀e

k[h|Xk]
)

(5.30)

where ˜̀e
k , p

e
D `

e
k.

In brief, the result is that the considered model assumes that an extended
object is the collection of multiple reflection points and that every reflection
point gives rise to a Bernoulli RFS of detections (likewise the state of a
point-object in the standard measurement model).

By merging the detection set with clutter (assumed to be Poisson), turns
out the complete measurement model for a single extended object

Yk = h(Xk) ∪ Ck =

E(X)⋃
e=1

he(Xk)

 ∪ Ck (5.31)

in conclusion, the PGFL of the set of measurements in this case is

Lk[h|Xk] = GD
k [h|Xk]GC

k [h]

=

E(Xk)∏
e=1

(
1− peD(Xk) + ˜̀e

k(h|Xk)
) exp(IC[h− 1])

. (5.32)

5.3.2 Multiple extended objects

Now assume that multiple extended objects are present in the scene at the
same time step k. In this case, for every extended object in Xk the single
extended object model holds, so that

h(Xk) =
⋃

X∈Xk

h(X) =
⋃

X∈Xk

E(X)⋃
e=1

he(X) (5.33)
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Hence, the general measurement model for extended objects is

Yk = h(Xk) ∪ Ck =

 ⋃
X∈Xk

E(X)⋃
e=1

he(X)

 ∪ Ck (5.34)

and, assuming that the clutter is Poisson, the relative PGFL is

Lk[h|Xk] = GD
k [h|Xk]GC

k [h] =

[
E∏
e=1

(
1− peD + ˜̀e

k[h]
)]Xk

exp(IC[h− 1]).

(5.35)

5.3.3 Poisson approximation

One can show that a multi-Bernoulli RFS composed by a great number of
identical Bernoulli components with small probability of existence can be
well approximated by a Poisson RFS.

Due to this fact, the single extended object multi-Bernoulli PGFL can
be replaced by the simpler Poisson PGFL

GD
k [h|Xk] = exp (ID[h− 1|Xk]) (5.36)

if the tracked extended object satisfies the following properties:

� every reflection point e is characterized by similar parameters peD, ˜̀
k;

� the probability of detection peD is small;

� the total number E(Xk) of reflection points is big.

The Poisson model has one remarkable drawback: by considering the
Poisson model (51), and assuming ID(·|Xk) > 0, it holds that

P(Yk 6= ∅|Xk) = 1− exp (−ID[1|Xk]) > 0 (5.37)

which means that the probability of the event Yk 6= ∅ given Xk cannot be
exactly zero. In other words, the Poisson approximation cannot represent
the situation where an extended object does not produce any measure (i.e.
the extended object is completely occluted). This limitation doesn’t occour
with the multi-Bernoulli model (45), in fact for the multi-Bernoulli it holds
that

P(Yk 6= ∅|Xk) = 1−
E(Xk)∏
e=1

(1− peD(Xk)) (5.38)
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so that Yk 6= ∅ given Xk can be a zero-probability event if every re-
flection point is not detected almost surely, that is peD(Xk) = 0 for all
e = 1, 2, . . . , E(Xk).

In order to resolve this representation problem, define the probability of
the event ’the extended object is in Xk’ as p̊D(Xk) and consequently define
the ’corrected Poisson’ PGFL of the set of detections as

G̊D
k [h|Xk] = 1− p̊D(Xk) + p̊D(Xk) exp (ID[h− 1|Xk]) (5.39)

now the correct model defines the probability of the event Yk 6= ∅ given Xk

as
P(Yk 6= ∅|Xk) = p̊D(Xk) (1− exp (−ID[1|Xk])) (5.40)

which can be exactly zero (if p̊D(Xk) = 0, i.e. if the extended object is not
present in Xk).

The likelihood PGFL of Yk given Xk takes the form

Lk[h|Xk] = G̊D
k [h|Xk]GC

k [h]

= [1− p̊D(Xk) + p̊D(Xk) exp(ID[h− 1|Xk])] exp(IC[h− 1])
.

(5.41)
Hence by assuming that every extended object satisfies the approximation
hypotheses, the multi extended object likelihood PGFL is given by

Lk[h|Xk] = (G̊D
k [h])Xk GC

k [h]

= [1− p̊D + p̊D exp(ID[h− 1])]Xk exp(IC[h− 1])
(5.42)

This equation represents the so-called approximate Poisson-body model
(APB model) for extended objects. The simplest multiobject filter for ex-
tended objects is the APB-PHD filter, which is based on the simple APB
model.

5.4 PHD filter for extended objects

5.4.1 Derivation workflow

The derivation of the PHD filter for extended objects follows the same pro-
cedure as the the standard PHD filter:

� step 1: according to the considered motion model, define the PGFL
form of the multiobject Bayes predictor;

� step 2: via functional differentation, extract the predicted PHD from
the predicted PGFL;
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� step 3: according to the considered measurement model, and assuming
that the predicted MPDF is Poisson, define the bivariate PGFL used
to represent the corrected PGFL;

� step 4: via functional differentation, find the expression of the cor-
rected PGFL from the bivariate PGFL;

� step 5: via functional differentation, extract the corrected PHD from
the corrected PGFL.

Since the standard PHD filter and the PHD filter for extended objects share
the same motion model, only the corrector of the PHD filter for extended
objects will be derived. In other words, step 1 and step 2 have already ad-
dressed, so that only step 3, 4, 5 will be described in what follows (assuming
the measurement model for extended objects rather than point objects).

5.4.2 Bivariate PGFL for extended objects

Recall that the bivariate PGFL Fk[·, ·] used to represent the multiobject
Bayes corrector is defined as follows

Fk[h, g] ,
∫
hw Lk[g|w] pk|k−1(w) dw. (5.43)

According to the APB measurement model, the bivariate PGFL reduces to

Fk[h, g] =

∫
hw [1− p̊D + p̊D exp(ID[g − 1])]w exp(IC[g − 1]) pk|k−1(w) dw

= exp(IC[g − 1])

∫
{h (1− p̊D + p̊D exp(ID[g − 1]))︸ ︷︷ ︸

,h̃

}wpk|k−1(w) dw

= exp(IC[g − 1])Gk|k−1[h (1− p̊D + p̊D exp(ID[g − 1]))]

.

(5.44)
Now, in order to simplify the differentation of such PGFL, assume that the
predicted PGFL Gk|k−1[·] is Poisson for some predicted intesity function
Dk|k−1(·), i.e.

Gk|k−1[h̃] = exp
(
Dk|k−1[h̃− 1]

)
. (5.45)

Consequently, the bivariate PFGL assumes the following Poisson form

Fk[h, g] = exp(IC[g − 1]) [exp
(
Dk|k−1[h̃− 1]

)
]h̃=h (1−p̊D+p̊D exp(ID[g−1]))

= exp
(
IC[g − 1] +Dk|k−1[h (1− p̊D + p̊D exp(ID[g − 1]))− 1]︸ ︷︷ ︸

,ι[h,g]

)
(5.46)
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5.4.3 Multiobject Bayes corrector for extended objects

Recall the general PGFL form of the multiobject Bayes corrector

Gk|k[h] =

∂ Fk[h,g]
∂gy

∣∣
g=0

∂ Fk[h,g]
∂gy

∣∣
h=1,g=0

. (5.47)

According to this expression, the corrected PGFL Gk|k[·] is given by the
following procedure:

� compute the general partial functional derivative ∂ Fk[h,g]
∂gy

;

� given the general expression of the functional derivative ∂ Fk[h,g]
∂gy

, find

the corrected PGFL.

Theorem 8. Let Fk[h, g] be the APB bivariate PGFL, then

∂ Fk[h, g]

∂gy
= Fk[h, g] IyC

∑
P�y

∏
w∈P

dw[h, g] (5.48)

where

� the notation P � y means that P is a partition of y (consequently,
w ∈ P means that w is a cell of the partition P);

� the cell bivariate PGFL dw[·, ·] is defined as follows

dw[h, g] ,

{
1 +Dk|k−1[h exp(ID[g − 1]) p̊D `y] if w = {y}
Dk|k−1[h exp(ID[g − 1]) p̊D `w] if |w| > 1

(5.49)

� the cell likelihoods are defined as follows

`y(x) ,
ID(y|x)

IC(y)
`w(x) ,

∏
y∈w

`y(x) (5.50)

Note that here y is a generic measure, while x is the given state of an
extended object.

Proof

The proof is by induction on the number of considered measurements, start-
ing from the simple case y = {y1}.

Induction base



92 Extended object PHD filter theory

If y = {y1}, then due to the first chain rule, it holds that

∂ Fk[h, g]

∂g {y1}
=

d exp(ι[g])

dι[g]

∂ι[g]

∂ {y1}
(5.51)

The first factor is trivially

d exp(ι[h, g])

dι[h, g]
= exp(ι[h, g]) = Fk[h, g] (5.52)

while the second factor is

∂ι[h, g]

∂ {y1}
= IC(y1) +Dk|k−1 [h p̊D exp(ID[g − 1]) ID(y1)]

= IC(y1)

(
1 +Dk|k−1

[
h p̊D exp(ID[g − 1])

ID(y1)

IC(y1)

])
, IC(y1)

(
1 +Dk|k−1 [h p̊D exp(ID[g − 1]) `y1 ]

)
, IC(y1) d{y1}[h, g]

. (5.53)

Now note that the singleton y = {y1} admits only one partition, the trivial
partition P = {{y1}}, which has only one cell, w = {y1}. Consequently,
holds ∑

P�{y1}

∏
w∈P

dw[h, g] =
∏

w∈{{y1}}

dw[h, g] = d{y1}[h, g] (5.54)

consequently, it turns out the claimed formula for the special case y = {y1}

∂ Fk[h, g]

∂g {y1}
= Fk[h, g] I

{y1}
C

∑
P�{y1}

∏
w∈P

dw[h, g] (5.55)

so that the base of the induction is proved.

Induction step

assume that the claimed equation holds for y = {y1, . . . , ym} with an arbi-
trary number m > 1 of measurements

∂ Fk[h, g]

∂g{y1, . . . , ym}
= Fk[h, g] I

{y1,...,ym}
C

∑
P�{y1,...,ym}

∏
w∈P

dw[h, g]. (5.56)

The objective is to show that this relation implies

∂ Fk[h, g]

∂g{y1, . . . , ym+1}
= Fk[h, g] I

{y1,...,ym+1}
C

∑
P�{y1,...,ym+1}

∏
w∈P

dw[h, g]. (5.57)
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In order to do that, start by the trival observation

{y1, . . . , ym+1} = {y1, . . . , ym} ∪ {ym+1} (5.58)

from which follows that

∂ Fk[h, g]

∂g{y1, . . . , ym+1}
=

∂ Fk[h, g]

∂g({y1, . . . , ym} ∪ {ym+1})
=

∂

∂g {ym+1}
∂ Fk[h, g]

∂g{y1, . . . , ym}

=
∂

∂g {ym+1}

Fk[h, g] I
{y1,...,ym}
C

∑
P�{y1,...,ym}

∏
w∈P

dw[h, g]


= I

{y1,...,ym}
C

∂

∂g {ym+1}

Fk[h, g]
∑

P�{y1,...,ym}

∏
w∈P

dw[h, g]


.

(5.59)
For the product rule, the functional derivative splits into the sum of two
different terms

∂ Fk[h, g]

∂g{y1, . . . , ym+1}
= I

{y1,...,ym}
C

[
∂ Fk[h, g]

∂g {ym+1}
∑

P�{y1,...,ym}

∏
w∈P

dw[h, g]

︸ ︷︷ ︸
,A[h,g]

+ Fk[h, g]
∂

∂g {ym+1}
∑

P�{y1,...,ym}

∏
w∈P

dw[h, g]

︸ ︷︷ ︸
,B[h,g]

].

(5.60)
The first term is

A[h, g] =
(
Fk[h, g]IC(ym+1)dym+1

[h, g]
) ∑
P�{y1,...,ym}

∏
w∈P

dw[h, g]

= Fk[h, g] IC(ym+1)
∑

P�{y1,...,ym}

(
dym+1

[h, g]
∏
w∈P

dw[h, g]

)

= Fk[h, g] IC(ym+1)
∑

P�{y1,...,ym}

∏
w∈P∪{ym+1}

dw[h, g]

(5.61)
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while the second one is

B[h, g] = Fk[h, g]
∑

P�{y1,...,ym}

∂

∂g {ym+1}
∏
w∈P

dw[h, g]

= Fk[h, g]
∑

P�{y1,...,ym}

∑
w∈P

∂ dw[h, g]

∂ {ym+1}
∏
w′∈P
w′ 6=w

dw′ [h, g]


= Fk[h, g]

∑
P�{y1,...,ym}

( ∏
w′∈P

dw′ [h, g]
∑
w∈P

1

dw[h, g]

∂ dw[h, g]

∂ {ym+1}

)
.

(5.62)
After some simple functional manipulations, it turns out that

∂ dw[h, g]

∂ {ym+1}
=
∂ (Dk|k−1[h exp(ID[g − 1]) p̊D `w])

∂ {ym+1}
= IC(ym+1) dw∪{ym+1}[h, g]

(5.63)

which yields

B[h, g] = Fk[h, g] IC(ym+1)
∑

P�{y1,...,ym}

( ∏
w′∈P

dw′ [h, g]
∑
w∈P

dw∪{ym+1}[h, g]

dw[h, g]

)

= Fk[h, g] IC(ym+1)
∑

P�{y1,...,ym}

∑
w∈P

∏
w′∈(P\w)∪(w∪{ym+1})

dw′ [h, g]


(5.64)

Consequently,

∂ Fk[h, g]

∂g{y1, . . . , ym+1}
= I
{y1,...,ym}
C [A[h, g] +B[h, g]]

= Fk[h, g] I
{y1,...,ym ym+1}
C

∑
P�{y1,...,ym}

( ∏
w∈P∪{ym+1}

dw[h, g]

+
∑
w∈P

∏
w′∈(P\w)∪(w∪{ym+1})

dw′ [h, g]

) .

(5.65)
Finally, recalling that the set of partitions P � {y1, . . . , ym+1} is given by

{P ∪ {ym+1}}︸ ︷︷ ︸
step 1

∪ {(P \ w) ∪ (w ∪ {ym+1})}︸ ︷︷ ︸
step 2

∀P�{y1, . . . , ym}, ∀w ∈ P

(5.66)
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lead to the following formula

∂ Fk[h, g]

∂g{y1, . . . , ym+1}
= Fk[h, g] I

{y1,...,ym ym+1}
C

∑
P�{y1,...,ym+1}

∏
w∈P

dw[h, g]

(5.67)
which closes the induction step and concludes the proof.

Theorem 9. The corrected PGFL is given by

Gk|k[h] , F̃k[h]

∑
P�y

∏
w∈P dw[h]∑

P′�y
∏

w′∈P′ dw′
(5.68)

where

F̃k[h] , exp(Dk|k−1[(h− 1) (1− p̊D + p̊D exp(−ID[1]))])

dw[h] ,

{
1 +Dk|k−1[h exp(−ID[1]) p̊D `y] if w = {y}
Dk|k−1[h exp(−ID[1]) p̊D `w] if |w| > 1

dw ,

{
1 +Dk|k−1[exp(−ID[1]) p̊D `y] if w = {y}
Dk|k−1[exp(−ID[1]) p̊D `w] if |w| > 1

(5.69)

Proof

On one hand, the numerator of the corrected PGFL is

∂ Fk[h, g]

∂gy

∣∣∣∣
g=0

=

Fk[h, g] IyC
∑
P�y

∏
w∈P

dw[h, g]


g=0

= Fk[h, 0] IyC
∑
P�y

∏
w∈P

dw[h, 0]

. (5.70)

The first factor is given by

Fk[h, 0] = exp(ι[0])

= exp(−IC[1] +Dk|k−1[h (1− p̊D + p̊D exp(−ID[1]))− 1]) , Fk[h]
(5.71)

while

dw[h, 0] =

{
1 +Dk|k−1[h exp(−ID[1]) p̊D `y] if w = {y}
Dk|k−1[h exp(−ID[1]) p̊D `w] if |w| > 1

, dw[h] .

(5.72)
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Hence, the numerator is

∂ Fk[h, g]

∂gy

∣∣∣∣
g=0

= Fk[h] IyC
∑
P�y

∏
w∈P

dw[h] . (5.73)

On the other hand, the denominator of the corrected PGFL is

∂ Fk[h, g]

∂gy

∣∣∣∣
h=1,g=0

, Fk[1] IyC
∑
P�y

∏
w∈P

dw (5.74)

where

dw , dw[1] =

{
1 +Dk|k−1[exp(−ID[1]) p̊D `y] if w = {y}
Dk|k−1[exp(−ID[1]) p̊D `w] if |w| > 1

. (5.75)

In conclusion, the corrected PGFL is

Gk|k[h] , F̃k[h]

∑
P�y

∏
w∈P dw[h]∑

P′�y
∏

w′∈P′ dw′
(5.76)

where

F̃k[h] ,
Fk[h]

Fk[1]
= exp(Dk|k−1[(h− 1) (1− p̊D + p̊D exp(−ID[1]))]). (5.77)

5.4.4 APB-PHD corrector

Theorem 10. The APB-PHD corrector, which corresponds to the APB
measurement model, is given by

Dk|k(x) = Λ(x)Dk|k−1(x) (5.78)

where the likelihood Λ(·) is defined as follows

Λ(x) , (1− p̊D(x) + p̊D(x) exp(−ID[1|x])) + Λ̄(y|x) (5.79)

and

Λ̄(y|x) , p̊D(x) exp(−ID[1|x])
∑
P�y

ωP

(∑
w∈P

`w(x)

dw

)
(5.80)

with

ωP ,

∏
w∈P dw∑

P′�y
∏

w′∈P′ dw′
(5.81)
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Proof

According to the generalized multiobject calculus, the corrected PHD Dk|k(·)
can be computed as the following functional derivative of the corrected PGFL
Gk|k[·]

Dk|k(x) =
∂ Gk|k[h]

∂ {x}

∣∣∣∣
h=1

(5.82)

thus the objective is to compute the following differentation

Dk|k(x) =
∂

∂ {x}

[
F̃k[h]

∑
P�y

∏
w∈P dw[h]∑

P′�y
∏

w′∈P′ dw′

]
h=1

=
1∑

P′�y
∏

w′∈P′ dw′

∂

∂ {x}

F̃k[h]
∑
P�y

∏
w∈P

dw[h]


h=1

=
1∑

P′�y
∏

w′∈P′ dw′

∂

∂ {x}

∑
P�y

F̃k[h]
∏
w∈P

dw[h]


h=1

=
1∑

P′�y
∏

w′∈P′ dw′

∑
P�y

∂

∂ {x}

[
F̃k[h]

∏
w∈P

dw[h]

]
h=1

=
1∑

P′�y
∏

w′∈P′ dw′

∑
P�y


∂ F̃k[h]

∂ {x}
∏
w∈P

dw[h]︸ ︷︷ ︸
,AP [h]

+ F̃k[h]
∂

∂ {x}
∏
w∈P

dw[h]︸ ︷︷ ︸
,BP [h]


h=1

.

(5.83)
In order to simplify the notations, define the functional

ι̃[h] , Dk|k−1[(h− 1)(1− p̊D + p̊D exp(−ID[1]))] (5.84)

so that F̃k[h] = exp(ι̃[h]) and, after some standard computations,

∂ F̃k[h]

∂ {x}
=
∂ exp(ι̃[h])

∂ {x}
= F̃k[h](1− p̊D(x) + p̊D(x) exp(−ID[1|x]))Dk|k−1(x)

(5.85)
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Consequently, the first term takes the form

AP [h] = F̃k[h](1− p̊D(x) + p̊D(x) exp(−ID[1|x]))Dk|k−1(x)
∏
w∈P

dw[h]

= F̃k[h](1− p̊D(x) + p̊D(x) exp(−ID[1|x]))
∏
w∈P

dw[h]Dk|k−1(x)

(5.86)
Now, for the second term, it holds that

∂

∂{x}
∏
w∈P

dw[h] =
∏
w′∈P

dw′ [h]

(∑
w∈P

1

dw[h]

∂ dw[h]

∂{x}

)
(5.87)

and
∂ dw[h]

∂{x}
=

∂

∂ {x}
[
Dk|k−1[h exp(−ID[1]) p̊D `w]

]
= exp(−ID[1|x]) p̊D(x) `w(x)Dk|k−1(x)

(5.88)

meaning that

∂

∂{x}
∏
w∈P

dw[h] =
∏
w′∈P

dw′ [h]

(∑
w∈P

1

dw[h]
exp(−ID[1|x]) p̊D(x) `w(x)Dk|k−1(x)

)

= p̊D(x) exp(−ID[1|x])
∏
w′∈P

dw′ [h]

(∑
w∈P

`w(x)

dw[h]

)
Dk|k−1(x)

.

(5.89)
Consequently the second term gets the form

BP [h] = F̃k[h]p̊D(x) exp(−ID[1|x])
∏
w′∈P

dw′ [h]

(∑
w∈P

`w(x)

dw[h]

)
Dk|k−1(x)

(5.90)
Hence, it turns out that

Dk|k(x) =
1∑

P′�y
∏

w′∈P′ dw′

∑
P�y

[
AP [h] +BP [h]

]
h=1

=
1∑

P′�y
∏

w′∈P′ dw′

∑
P�y

[
F̃k[h]

(
(1− p̊D(x) + p̊D(x) exp(−ID[1|x]))

∏
w∈P

dw[h]+

p̊D(x) exp(−ID[1|x])
∏
w′∈P

dw′ [h]

(∑
w∈P

`w(x)

dw[h]

))]
h=1

Dk|k−1(x)

(5.91)
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Now, by observing that dw[1] = dw and F̃k[1] = 1, the claimed formula for
the corrected PHD follows

Dk|k(x) =
1∑

P′�y
∏

w′∈P′ dw′

∑
P�y

[
(1− p̊D(x) + p̊D(x) exp(−ID[1|x]))

∏
w∈P

dw+

p̊D(x) exp(−ID[1|x])
∏
w′∈P

dw′

(∑
w∈P

`w(x)

dw

)]
Dk|k−1(x)

=

[
(1− p̊D(x) + p̊D(x) exp(−ID[1|x]))

∑
P�y

∏
w∈P dw∑

P′�y
∏

w′∈P′ dw′︸ ︷︷ ︸
=1

+

p̊D(x) exp(−ID[1|x])
∑
P�y

∏
w′′∈P dw′′∑

P′�y
∏

w′∈P′ dw′︸ ︷︷ ︸
,ωP

(∑
w∈P

`w(x)

dw

)]
Dk|k−1(x)

=

[
(1− p̊D(x) + p̊D(x) exp(−ID[1|x]))

+ p̊D(x) exp(−ID[1|x])
∑
P�y

ωP

(∑
w∈P

`w(x)

dw

)
︸ ︷︷ ︸

,Λ̄(y|x)

]
Dk|k−1(x)

=

[
(1− p̊D(x) + p̊D(x) exp(−ID[1|x])) + Λ̄(y|x)︸ ︷︷ ︸

,Λ(x)

]
Dk|k−1(x)

(5.92)

5.5 Gaussian mixture implementation

5.5.1 GM-APB-PHD corrector

Theorem 11. Consider the following assumptions:

� the predicted PHD is a Gaussian mixture of the following form

Dk|k−1(x) =

νk|k−1∑
i=1

wik|k−1N (x;xik|k−1, P
i
k|k−1) (5.93)
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� the detection intensity ID[·|x] is Gaussian, in the sense that

ID(y|x) , λD(x) `k(y|x) (5.94)

where the spatial distribution `k(·|x) , ID(y|x)/ID[1|x], assuming that
the single-point measurement model is linear-Gaussian, i.e. Yk =
CkXk + Vk with Vk ∼ N (0, Rk) , is the following Gaussian single-
point-object likelihood

`k(y|w) = N (y;Ck w,Rk) (5.95)

� the detection probability p̊D(·) satisfies for all i and for all x ∈ Rn the
relationship

p̊D(x)N (x;xik|k−1, P
i
k|k−1) = p̊D(xik|k−1)N (x;xik|k−1, P

i
k|k−1)

, p̊iDN (x;xik|k−1, P
i
k|k−1)

(5.96)

where p̊iD , p̊D(xik|k−1).

� the detection intensity λD(x) , ID[1|x] satisfies for all i and for all
x ∈ Rn the relationship

exp (−λD(x)) N (x;xik|k−1, P
i
k|k−1) = exp

(
−λD(xik|k−1)

)
N (x;xik|k−1, P

i
k|k−1)

, exp
(
−λiD

)
N (x;xik|k−1, P

i
k|k−1)

(5.97)
where λiD , λD(xik|k−1).

Then, the corrected PHD is a Gaussian mixture of the form

Dk|k(x) = DND
k|k (x) +

∑
P�y

∑
w∈P

DD
k|k(x;P,w) (5.98)

where:

� 1) the undetected object PHD DND
k|k (·) is

DND
k|k (x) ,

νk|k−1∑
i=1

wik|kN
(
x;xik|k, P

i
k|k

)
(5.99)

where for all predicted Gaussian components i, defined

p̊ieff , p̊
i
D exp(−λiD) (5.100)
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the undetected object weights are given by

wik|k ,
(
1− p̊ieff

)
wik|k−1 (5.101)

while the parameters of the nondetection Gaussian components are
given by

xik|k , x
i
k|k−1

P ik|k , P
i
k|k−1

(5.102)

� 2) the detected object PHD DD
k|k(·; ·, ·) is

DD
k|k(x;P,w) ,

νk|k−1∑
i=1

wi,P,wk|k N
(
x;xi,wk|k, P

i,w
k|k

)
(5.103)

where for all predicted Gaussian component i, P, w, defined (the sym-
bol ⊕ denotes the vertical stacking operation)

yw ,
⊕
y∈w

y Cw , [C ′k, . . . , C
′
k︸ ︷︷ ︸

|w| times

]′ Rw , diag(Rk, . . . , Rk︸ ︷︷ ︸
|w| times

)′
.

(5.104)
The detected object weights are given by

wi,P,wk|k ,

(
p̊ieff ωP `

i
w

dw

)
wik|k−1 (5.105)

with

`iw ,

(
λiD
)|w|N (yw; ŷi,wk|k−1, S

i,w
k

)
IwC

dw = δ|w|,1 +
1

IwC

νk|k−1∑
ι=1

p̊ιeff (λιD)
|w| N (yw; ŷι,wk|k−1, S

ι,w
k )wιk|k−1

(5.106)

and ŷi,wk|k−1, S
i,w
k given by the following Kalman predictor

Si,wk , Rw + CwP
i
k|k−1C

′
w

ŷi,wk|k−1 , Cw x
i
k|k−1

(5.107)

while the parameters of the detection Gaussian components are given
by the following Kalman corrector

Liw , P
i
k|k−1 C

′
w

(
Si,wk

)−1

P i,wk|k , (I − Liw Cw)P ik|k−1

xi,wk|k , x
i
k|k−1 + Liw

(
yw − ŷi,wk|k−1

) (5.108)
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Proof

The corrected PHD is

Dk|k(x) = Λ(x)Dk|k−1(x)

=
(
1− p̊D(x) + p̊D(x) exp(−ID[1|x])

)
Dk|k−1(x)︸ ︷︷ ︸

,DND
k|k(x)

+ Λ̄(y|x)Dk|k−1(x)︸ ︷︷ ︸
,DD

k|k(x)

(5.109)
so the objective is to show that the undetected object PHD DND

k|k (·) is given

by (1.99) and that the detected object PHD DD
k|k(·) =

∑
P
∑

wD
D
k|k(·;P,w)

where DD
k|k(·;P,w) is given by (1.103).

Undetected object PHD

Recalling the Gaussian form of the predicted PHD and by defining λD(·) ,
ID[1|·], it follows that

DND
k|k (x) =

νk|k−1∑
i=1

(
1− p̊D(x) + p̊D(x) exp (−λD(x))

)
wik|k−1N

(
x;xik|k−1, P

i
k|k−1

)
(5.110)

Now, thanks to the previous assumptions,

DND
k|k (x) ,

νk|k−1∑
i=1

(
1− p̊iD + p̊iD exp

(
−λiD

) )
wik|k−1N

(
x;xik|k−1, P

i
k|k−1

)
=,

νk|k−1∑
i=1

wik|kN
(
x;xik|k, P

i
k|k

)
(5.111)

where for all i

wik|k , (1− p̊ieff)wik|k−1

P ik|k , P
i
k|k−1

xik|k , x
i
k|k−1

. (5.112)

Detected object PHD
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From the Gaussian form of the predicted PHD. it holds that

DD
k|k(x) = p̊D(x) exp (−λD(x))

∑
P�y

ωP

(∑
w∈P

`w(x)

dw

)

×

(νk|k−1∑
i=1

wik|k−1N
(
x;xik|k−1;P ik|k−1

))

=
∑
P�y

∑
w∈P

νk|k−1∑
i=1

p̊D(x) exp (−λD(x)) ωP
`w(x)

dw
wik|k−1N (x;xik|k−1, P

i
k|k−1)︸ ︷︷ ︸

,DD
k|k(x;P,w)

.

(5.113)
so the objective is to show that equivalence DD

k|k(·; ·, ·) is given by (1.103).
Due to the previous assumptions,

DD
k|k(x;P,w) ,

νk|k−1∑
i=1

p̊iD exp
(
−λiD

)
ωP

`w(x)

dw
wik|k−1N (x;xik|k−1, P

i
k|k−1)

=

νk|k−1∑
i=1

p̊ieff ωP`w(x)

dw
wik|k−1N (x;xik|k−1, P

i
k|k−1)

(5.114)
now focus on the cell likelihood `w(·). It holds that

`w(x) ,
∏
y∈w

`y(x) ,
∏
y∈w

ID(y|x)

IC(y)
=

(λD(x))
|w| N (yw;Cwx,Rw)

IwC
(5.115)

where are defined

yw ,
⊕
y∈w

y Cw , [C ′k, . . . , C
′
k︸ ︷︷ ︸

|w| times

]′ Rw , diag(Rk, . . . , Rk︸ ︷︷ ︸
|w| times

)′
(5.116)

Consequently,

DD
k|k(x;P,w) =

νk|k−1∑
i=1

p̊ieff ωP
dw

(
λiD
)|w|
IwC

wik|k−1N (yw;Cwx,Rw)N (x;xik|k−1, P
i
k|k−1)

(5.117)
Now, for the foundamental Gaussian identity, it holds that

N (yw;Cwx,Rw)N (x;xik|k−1, P
i
k|k−1) = N (yw; ŷi,wk|k−1, S

i,w
k )N (x;xi,wk|k, P

i,w
k|k )

(5.118)
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where ŷi,wk|k−1, S
i,w
k are given by the following Kalman predictor

Si,wk , Rw + CwP
i
k|k−1C

′
w

ŷi,wk|k−1 , Cw x
i
k|k−1

(5.119)

while xi,wk|k, P
i,w
k|k are given by the following Kalman corrector

Liw , P
i
k|k−1 C

′
w

(
Si,wk

)−1

P i,wk|k , (I − Liw Cw)P ik|k−1

xi,wk|k , x
i
k|k−1 + Liw

(
yw − ŷi,wk|k−1

). (5.120)

Hence, it turns out that

DD
k|k(x;P,w) ,

νk|k−1∑
i=1

p̊ieff ωP `
i
w

dw
wik|k−1N (x;xi,wk|k, P

i,w
k|k )

,

νk|k−1∑
i=1

wi,P,wk|k N (x;xi,wk|k, P
i,w
k|k )

(5.121)

where

`iw ,

(
λiD
)|w| N (yw; ŷi,wk|k−1, S

i,w
k )

IwC
wi,P,wk|k ,

p̊ieff ωP `
i
w

dw
. (5.122)

Finally, the last step is show the explicit expression of dw. In order to do
that, recall the definition of dw and apply the assumptions, so that

dw =

{
1 +Dk|k−1[p̊eff `y] if w = {y}
Dk|k−1[p̊eff `w] if |w| > 1

= δ|w|,1 +Dk|k−1[p̊eff `w]

= δ|w|,1 +

∫
p̊eff(x)

(λD(x))
|w| N (yw;Cw x,Rw)

IwC

×

(νk|k−1∑
ι=1

wιk|k−1N
(
x;xιk|k−1, P

ι
k|k−1

))
dx

= δ|w|,1 +
1

IwC

νk|k−1∑
ι=1

p̊ιeff (λιD)
|w| N

(
yw; ŷι,wk|k−1, S

ι,w
k

)
wιk|k−1

(5.123)



5.5 Gaussian mixture implementation 105

5.5.2 Partitioning methods

Both the theorical corrector and its Gaussian mixture implementation are
computationally intractable because they involve the computation of evry
possible partition of the actual set of measure y gathered by the sensors.
However, suppose that the extended objects present in the scene are well
separated and that the measurements generated by every object are not
mixed togheter but are tightly clustered around the corrisponding object. In
this case exist one and only one natural partition P∗ that haves a dominant
weight with respect the others B|y| − 1 possible partitions.

In a more complicated situation where there is not a natural partition
of the set of measures, multiple partitions can have large weights. In some
sense, the number of relevant partitions grows with the entropy contained in
the set of measures y.

The computational cost of the PHD corrector can be reduced to a tractable
level by reducing drastically the number of partition considered. The idea is
the following: instead to consider every possible partitions in the complete
set P � y, consider only a small subset SP (y) ⊂ P � y composed by only
P (y) , |SP (y)| � B|y| = |P � y| good partitions, where good means that
hopefully every partition considered have large weight. The PHD corrector,
then, can be approximated as follows

Dk|k(x) = DND
k|k (x) +

∑
P∈SP (y)

∑
w∈P

DD
k|k(x;P,w). (5.124)

There are several ways to define the set of relevant partitions SP (y), for
example common partitioning methods used in MOT are the following:

� distance partitioning;

� GLO partitioning;

5.5.3 Distance partitioning

The idea of this method is to collect in a same cell measures that are near
from each other. This a idea seems reasonable if it is true that the extended
objects produce their measures in the neighborhood of their centroids.

In order to understand how works distance partitioning, consider the
following example.

� example - Consider the following set of measures (2-dimensional po-
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sitions expressed in meters)

y =

{
y1 ,

[
1
0

]
, y2 ,

[
0
1

]
, y3 ,

[
3
3

]
, y4 ,

[
7
7

]
, y5 ,

[
8
7

]
, y6 ,

[
9
7

]
, y7 ,

[
10
7

]}
(5.125)

and consider the conventional Euclidean distance ∆i,j ,
√

(yi − yj)′(yi − yj),
so the distance matrix ∆ , [∆i,j ] is

∆ ≈



· 1.4 3.6 9.2 9.8 10.6 11.4
· · 3.6 9.2 10 10.8 11.6
· · · 5.6 6.4 7.2 8.1
· · · · 1 2 3
· · · · · 1 2
· · · · · · 1
· · · · · · ·


(5.126)

in this case the measurements y1, y2 are near from each other (∆1,2 ≈
1.4 is small) and the measurements y4, y5, y6, y7 are near from each
other (∆4,5 = ∆5,6 = ∆6,7 = 1 are ”small”), so there is a natural
partition

P = {{y1, y2}, {y3}, {y4, y5, y6, y7}} (5.127)

Distance partitioning defines two measures as near if for a given tresh-
old γ (which is a parameter of the algorithm) holds

∆i,j ≤ γ (5.128)

and, based on this definition, choose the (unique, as one can show)
partition that satisfies the following property: if ∆i,j ≤ γ (≡ yi and
yj are near) then yi and yj are in the same cell. Note that, on the
contrary, distance partitioning doesn’t guarantee that if yi and yj are
in the same cell then ∆i,j ≤ γ.

As a consequence of this defining property, if γ , 0 then every measures
are considered isolated and the partition generated is the maximal
partition, which is in this example

P = {{y1}, {y2}, {y3}, {y4}, {y5}, {y6}, {y7}} (5.129)

if γ , ∞ then every measures are considered near and the partition
generated is the ”minimal partition”, which is in this example

P = {{y1, y2, y3, y4, y5, y6, y7}} (5.130)

the specific partition is produced, for example, by the treshold γ , 1.5.
Distance partitioning consider the following procedure to generate the
partition.
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– step 1: defines w1 , {y1} and searches the neighbohrs of y1.
If y1 has not any neighbors then the partition w1 is completed,
otherwise includes in w1 such neighborhs.

In this example there is one neighbohr for y1, that is y2, so w1 ,
{y1} is augmented to w1 , {y1, y2}.

– step 2: if w1 is not completed, repeat the operations of step 1 on
the new measurement just included.

In this example (only) the measurement y2 was just added to w1

so, firstly the set of neighborhs of y2 is searched. Excluding y1,
the measure y2 has not any neighbohrs so w1 is declared complete,
so

w1 , {y1, y2} (5.131)

– step 3: the first measure that is not in w1 is considered to ini-
tialize the new cell w2. In this example such measure is y3, so
w2 , {y3}. Then, step 1 and step 2 are applied to the new cell.
In this example y3 has not any neighbors, so the relative cell is
declared complete

w2 , {y3} (5.132)

– step 4: the first measurement that is not in w1 or w2 is considered
to initialize the new cell w3. In this example such measurement
is y4, so w3 , {y4}. Then, by repeating step 1 and step 2 on w3

turns out for this example:

* y4 has one neighbor that is y5. The cell is augmented to
w3 = {y4, y5}.

* the new measurement y5 has a new neighbor that is y6. The
cell is augmented to w3 = {y4, y5, y6}.

* the new measurement y6 has a new neighbor that is y7. The
cell is augmented to w3 = {y4, y5, y6, y7}.

* the new measurement y7 has not any new neighbors, so w3 is
declared complete.

w3 , {y4, y5, y6, y7} (5.133)

– step 5: the first measurement that is not in w1, w2 or w3 is
considered to initialized the new cell w4. In this example w1,
w2 and w3 exhaust the set of measurements y, so the partition
composed by such cells is declared complete, thus it is returned

P = {w1,w2,w3} (5.134)

which is the considered partition.
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Note that the defining property is satisfied: the couples of near mea-
surements are

– ∆1,2 = 1.4 < γ , 1.5. The measures y1 and y2 are in the same
cell w1;

– ∆4,5 = 1 < γ , 1.5. The measures y4 and y5 are in the same cell
w3;

– ∆5,6 = 1 < γ , 1.5. The measures y5 and y6 are in the same cell
w3;

– ∆6,7 = 1 < γ , 1.5. The measures y6 and y7 are in the same cell
w3;

On the other hand, if two measurements are in the same cell then in
general is not true that are near. For example, consider y4 and y7, they
belong to the same cell w3 but their distance is ∆4,7 = 3 > γ , 1.5, so
they are not near.

5.5.4 GLO partitioning

In general, to achieve good tracking performance it is necessary to consider
a partition that resembles accurately the true partition generated by the
objects in the scene. Considering only one partition between the B|y| possible
partitions is not a good idea because it is unlikely that such partition is
similar to the true one. In order to increase the chance to have included a
good partition in the estimation problem, a set of partition SP (y) containing
P > 1 different partitions is required.

The GLO (Granstrom Lundquist Orguner - name of the authors) parti-
tioning generates multiple partitions with the following procedure:

� step 1: Given the set of measurements y, every
(|y|

2

)
= |y| · (y −

1)/2 possible distances ∆i,jare computed by considering the (unitless)
Mahalanobis distance

∆i,j ,
√

(yi − yj)′R−1(yi − yj) (5.135)

� step 2: Since y is Gaussian and the distance considered is Maha-
lanobis, the variable ∆i,j is a χ2 with p = dim(y) degrees of freedom.
The following confidence interval (based on the inverse CDF of the χ2

p

distribution) is thus computed

δmin(1− α) < ∆i,j < δmax(1− α) (5.136)

where the significance level α is defined by 1 − α = P(δmin(1 − α) <
∆i,j < δmin(1− α)) and typically is chosen in [0, 0.4].
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� step 3: is defined the set of thresholds as follows

Γ , {∆i,j : δmin(1− α) < ∆i,j < δmax(1− α)} ∪ {0} (5.137)

where only the distances ∆i,j with statistical relevance are considered.

� step 4: For every treshold γ ∈ Γ, distance partitioning is performed.
Consequently, in this step |Γ| partitions are generated.

� step 5: It is possible that distance partitioning produces the same
partition when different tresholds are considered. In this final step,
the set of partition SP (y) is defined by considering only the different
partitions generated in step 4.
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Chapter 6

Fundamentals of random
matrices

6.1 Summary

In this chapter are discussed the main mathematical tools, the Wishart and
inverse Wishart distributions, used by the GIW, MEM-EKF* and LO-MEM
filters to deal with the estimation of the shape of an extended object. Since
theese two distributions are matrix-variate, new concepts such random ma-
trices, matrix-variate PDFs are briefly introduced in the first part of the
chapter. In the final part of the chapter are discussed the definitions and
applications of the Wishart and inverse Wishart distributions.

6.2 Matrix vectorization

6.2.1 Full vectorization

Let A be a generic matrix in Rm×n. Let A1, . . . , An be the column of A

A =
[
A1 · · · An

]
(6.1)

the vectorization of A is an operation that maps the matrix A into a column
vector vec[A] ∈ Rm·n obtained by stacking vertically the columns A1, . . . ,
An of A

vec[A] ,
n⊕
i=1

Ai =
[
A′1 · · · A′n

]′
(6.2)

113
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Note that given the vectorization vec[A] it is possible to recover the
orginal matrix A by partitioning vec[A] in n consecutive column m× 1 sub-
vectors A1, . . . , An and by organizing them in a m × n matrix, which is
A itself. This means that vec[A] provides an equivalent way to express the
information encoded by matrix A. Thanks to the vectorial representation,
familiar vectorial concepts, like the core concepts of the vectorial differential
calculus or the concepts of the random vectors theory, can be easily extend
to the space of matrices.

6.2.2 Half vectorization

Let A be a symmetric matrix in Rm×m, i.e. Aji = Aij for all i, j = 1, . . . ,m.
In this case the matrix A can be expressed as a ”compressed” vectorization
since there are not m2 distinct elements but only m(m + 1)/2, which are
the diagonal elements {Aii}1≤i≤m and (by convention) the super-diagonal
elements {Aij}1≤j≤i≤m (rather than the sub-diagonal elements).

Exploiting this fact, define the half vectorization of A = A′ ∈ Rm×m as

the operation that maps A into the column vector vech[A] ∈ R
m(m+1)

2 given
by

vech[A] ,
[
A11 A12 A22 · · · A1m · · · Amm

]′
(6.3)

for example, if m , 4 then

vech[A] ,
[
A11 A12 A22 A31 A32 A33 A41 A42 A43 A44

]′
(6.4)

6.3 Kronecker product

The Kronecker product between a matrix A ∈ Rm×n and a matrix B ∈ Rp×q
is the matrix A⊗B ∈ Rpm×qn defined as follows

A⊗B ,

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB


often the Kronecker product permits to express complicated expressions in
simple and compact form. For example, consider a 2× 2 sample covariance
matrix obtained from a sample of m measures y1, . . . ,ym characterized by
the mean measure ȳ , m−1

∑m
i=1 yi

S ,
1

m− 1

m∑
i=1

(yi − ȳ)(yi − ȳ)′ (6.5)
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if, for some reason, the vectorial representation vS , vech[S] is preferred to
the matricial representation S, then one can express in vectorial form the
sample covariance only trough algebraic operations

vS =
F

m− 1

m∑
i=1

[(yi − ȳ)⊗ (yi − ȳ)] (6.6)

where

F ,

1 0 0 0
0 1 0 0
0 0 0 1

 (6.7)

6.4 Some useful properties

The vectorization and the Kronecker product give rise to some useful prop-
erties that are widely used in multivariate statistic. A brief list of such
properties is the following:

� vec[aA+ bB] = avec[A] + bvec[B] (linearity);

� vec[AB] = (I ⊗A)vec[B] = (B′ ⊗ I)vec[A] = (B′ ⊗A)vec[I];

� vec[ABC] = (C ′ ⊗A)vec[B];

� vec[vv′] = v ⊗ v (with v column vector);

� tr[A′B] = vec[A]′vec[B];

� tr[ABC] = vec[A′]′(I ⊗ C)vec[C];

� tr[D′ABC ′] = vec[D]′(C ⊗A)vec[B];

� tr[AB′CBD] = vec[B]′(DA⊗ C ′)vec[B] = vec[B]′(A′D′ ⊗ C)vec[B];

� tr[AB′CB] = vec[B]′(A⊗ C ′)vec[B] = vec[B]′(A′ ⊗ C)vec[B];

6.5 Matrix integral

6.5.1 Full integration

Let f : Rm×n 7→ R be a scalar function of the generic m× n matrix X. The
integral of f(·) over a region R ⊆ Rm×n is defined as the iterated integral
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of f(·) with respect each element of vec[X], where such elements Xij range
according vec[R]∫

R

f(X) dX ,
∫

vec[R]

f(vec[X]) d vec[X]

=

∫
vec[R]

f(X11, · · · , Xmn) dX11 · · · dXmn

(6.8)

in short, the measure considered on the space Rm×n of m × n real-valued
matrices is the Lebesgue measure of the m · n-dimensional Euclidean space
Rm·n

dX , d vec[X] ,
n∏
j=1

m∏
i=1

dXij (6.9)

essentially, the matrix integral is a conventional multiple integral in a ”high
dimensional” Euclidean space.

6.5.2 Half integration

Let f : Rm×m 7→ R be a scalar function of a symmetric m ×m matrix X.
The integral of f(·) over a region R ⊆ Rm×m is defined as the the iterated
integral of f(·) with respect each element vech[X], where such elements Xij

range according vech[R]∫
R

f(X) dX ,
∫

vech[R]

f(vech[X]) d vech[X]

=

∫
vech[R]

f(X11, X12, X22, · · · , X1m, · · ·Xmm)

× dX11 dX12 dX22 · · · dX1m · · · dXmm

(6.10)

in short, the measure considered on the space Rm×m of symmetric m ×m
real-valued matrices is the Lebesgue measure of the m·(m+1)/2-dimensional

Euclidean space R
m(m+1)

2

dX , d vech[X] =

m∏
j=1

m∏
i≤j

dXij (6.11)

6.6 Random matrices

Roughly speaking, an m×n random matrix X is a matrix whose m·n entries
Xij are random variables. More formally, an m × n random matrix X is
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a measurable map X : (Ω, E ,P) 7→ Rm×n, where (Ω, E ,P) is a probability
space. According to this fact, the basic concepts related to random matrices
are direct generalizations of the basic concepts of the random variables. In
what follows, such concepts, i.e. the definition of PDF and the definitions of
the most common moment of a random matrix, are briefly discussed.

6.6.1 Generic random matrices

� definition 1: Let p : Rm×n 7→ R be a scalar function of the generic
m×n matrix X. The function p(·) is a matrix-variate PDF if and only
if

1. p(X) ≥ 0 for all X ∈ Rm×n;

2.
∫
p(X) dX ,

∫
p(vec[X])) d vec[X] = 1.

� definition 2: Let h : Rm×n 7→ Rp×q be a matrix function and let X
be a generic random m× n matrix with PDF p(·). The expected value
of h(·), whos typical element is denotes as hij , is defined as

E[h(X)] ,

E[h11(X)] · · · E[h1q(X)]
...

...
E[hp1(X)] · · · E[hpq(X)]

 (6.12)

where for all i = 1, . . . , p and for all j = 1, . . . , q

E[hij(X)] ,
∫
hij(X) p(X) dX ,

∫
hij(X) p(vec[X])) d vec[X]

(6.13)

� definition 3: The expected value of the m × n random matrix X,
whos typical element is Xij , with PDF p(·) is the expected value of
the identical function h(X) = X, i.e.

E[X] ,

E[X11] · · · E[X1n]
...

...
E[Xm1] · · · E[Xmn]

 (6.14)

where for all i = 1, . . . ,m and for all j = 1, . . . , n

E[Xij ] ,
∫
Xij p(X) dX ,

∫
Xij p(vec[X])) d vec[X] (6.15)
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� definition 4: The variance of the m × n random matrix X is the
expected value of the function h(X) = (X − E[X])(X − E[X])′, i.e.

Var[X] , E [(X − E[X])(X − E[X])′] (6.16)

as one can show, the expectation operator (66) satisfies the familiar linear
properties of the usual expectation operator:

� if A is a deterministic matrix then E[A] = A;

� if A, B are deterministic matrices with suitables dimensions, then
E[Ah(X)B] = AE[h(X)]B;

� if h1(·) and h2(·) are matrix functions of the same order then E[h1(X)+
h2(X)] = E[h1(X)] + E[h2(X)]

from the previous properties of the expectation operator follows immediately
the simplified formula for the variance

Var[X] = E[XX ′]− E[X]E[X]′ (6.17)

More commonly than the variance, the dispersion of a random matrix
is quantified by the covariance. The extension to the matrix-variate case
of the covariance definition is less straightforwad then the previous defini-
tions and involves the vec[·] operator. Since there is a bijection between X
and vec[X], the statistical properties of the random matrix X ∈ Rm×n are
completely represented by the statistical properties of the random column
vector vec[X] ∈ Rm·n. This means that the distribution of a random matrix
X is simply the distribution of the random vector vec[X]. Naturally, one
can think also in terms of the columns of X, which are the columns of X ′,
thus the same reasoning holds for the random column vector vec[X ′] ∈ Rn·m.
According to this fact, from the definition of matrix-variate PDF and matrix
integral follows the relation

p(X) = p(vec[X]) = p(vec[X ′]) = p(X11, · · · , Xmn) (6.18)

which says that there are four equivalent ways to express the PDF of a
random matrix:

1. (the most explicit) p(X11, · · · , Xmn), where every single random vari-
able Xij is denoted separately in the joint density p(·);

2. p(vec[X]) = p(X1, · · · , Xn), where the random variables Xij are orga-
nized and denoted in the joint density p(·) in n random m-dimensional
column vectors, which are the columns of X;
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3. p(vec[X ′]) = p(X1, · · · , Xm), where the random variables Xij are orga-
nized and denoted in the joint density p(·) in m random n-dimensional
column vectors, which are the transpose rows of X;

4. (the most coincise) p(X), where the random variables Xij are globally
organized and denoted in the joint density p(·) in 1 random matrix.

As a consequence, one can define the density of a random matrix by using
three different representations and then switch from one to another without
loosing any information. Thus, now consider the vectorial representation
given by p(vec[X ′]) instead of the global representation given by p(X). Since
vec[X ′] is a random vector, it is well-defined its covariance.

� definition 5: The covariance of a random matrix X is the covariance
of the the random vector vec[X ′], i.e.

Cov[X] , Cov[vec[X ′]]

, E[(vec[X ′]− E[vec[X ′]])(vec[X ′]− E[vec[X ′]])′]
(6.19)

� definition 6: The cross-covariance between the random matrices X,
Y is the cross-covariance between the random vectors vec[X ′], vec[Y ′],
i.e.

Cov[X,Y ] , Cov[vec[X ′], vec[Y ′]]

, E[(vec[X ′]− E[vec[X ′]])(vec[Y ′]− E[vec[Y ′]])′]
(6.20)

Abbreviate vX , vec[X ′], v̄X , E[vec[X ′]], then the covariance of X can
be expressed more clearly as

Cov[X] = Cov[vX ] = E[(vX − v̄X)(vX − v̄X)′] (6.21)

moreover, due to the usual elementary properties, holds the simplified for-
mula

Cov[X] = E[vXv
′
X ]− v̄X v̄′X (6.22)

and in the same way,

Cov[X,Y ] = Cov[vX , vY ] = E[(vX − v̄X)(vY − v̄Y )′]

= E[vXv
′
Y ]− v̄X v̄′Y

(6.23)

6.6.2 Symmetric random matrices

For the symmetric case one has to define the concepts of PDF and moments
in terms of half integration rather than full integration. Thus, in every
occurrance, the vec[·] is replaced with the vech[·] operator.
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6.7 Wishart distribution

6.7.1 Definition

Definition 7. Let y1, . . . , ym be independent N (0,Σ) random vectors in
Rp. If Σ > 0 and m > p − 1, then the symmetric random matrix A, called
scatter matrix, defined as

A ,
m∑
i=1

yi y
′
i (6.24)

is said to have the p-dimensional Wishart distribution with m degrees of
freedom and scale matrix Σ. It will be used the notation A ∼ Wp(m,Σ)

The Wishart distribution gets a familiar form if the attention is restricted
to the simpler case where:

� the sample is univariate, i.e. p = 1 or y1, . . . , ym (with m > 1) are
independent scalar random variables;

� the underlying distribution of the sample is a standard Gaussian, i.e.

yi ∼ N (0, 1) i = 1, 2, . . . ,m

then the Wishart distribution reduces to the familiar chi-squared distribution
(with m degrees of freedom)

A ∼ W1(m, 1) = χ2
m

The Wishart distribution can be though as a multidimensional chi squared
distribution and, likewise the χ2

m distribution is used to estimate the vari-
ance of a Gaussian univariate sample, the Wp (m,Σ) distribution is used to
estimate the covariance matrix of a Gaussian p-variate sample.

6.7.2 Density and moments

If A ∼ Wp (m,Σ) then the matrix-variate PDF of A is

pA(A; p,m,Σ) =

{
1
K (detA)

m−p−1
2 etr

(
− 1

2Σ−1A
)

if A = A′ > 0

0 otherwise
(6.25)

where etr(·) is the exponential trace operator1 and the normalizer K is given
by

K , 2m
p
2 π

p(p−1)
4

p∏
i=1

Γ

(
m+ 1− i

2

)
(det Σ)

m
2 (6.26)

1if M is a square matrix, then etr(M) , exp (tr[M ]), where tr[·] is the trace operator
(sum of the diagonal elements of M)
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with Γ(·) be the Euler’s Gamma function2, i.e.

Γ(x) ,
∫
R+

tx−1 exp(−t) dt (6.27)

According to the PDF (???), the expected value and the covariance of A are
given by

E[A] = mΣ

Cov[vec[A]] = m(Ip2 +Kp)(Σ⊗ Σ)
(6.28)

where Ip2 is the p2×p2 identity matrix and Kp, called commutation matrix 3,
is defined as

Kp ,
p∑

i,j=1

(Hij ⊗H ′ij) (6.29)

with Hij ∈ {0, 1}p×p be a matrix having a unit in position ij and zero
elsewhere. For example, if p = 2 then

H11 =

[
1 0
0 0

]
H12 =

[
0 1
0 0

]
H21 =

[
0 0
1 0

]
H22 =

[
0 0
0 1

]
(6.30)

and

K2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (6.31)

Note that the covariance of A is expressed in a redundant form due to the
use of the vec[·] operator.

6.7.3 Application

The most important application of the Wishart distribution is expressed by
the following famous result.

Theorem 12. (Wishart, 1920 circa) Let {yi}mi=1 be a sample of m > p
IID p-variate Gaussian vectors with expectation µy ∈ Rp and non-singular
covariance Σy ∈ Rp×p

yi ∼ N (µy,Σy) i = 1, 2, . . . ,m

then

2the Gamma function is the extension of the factorial function n 7→ n! to non-integers
3the name arise from the properties vec[M ′] = Kpvec[M ], vec[M ] = Kpvec[M ′], where

M is a generic p× p matrix
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1. the sample mean ȳ ∈ Rp is Gaussian with expectation µy and covari-
ance Σy/m

ȳ ,
1

m

m∑
i=1

yi ∼ N
(
µy,

Σy
m

)
2. the centered scatter matrixA ∈ Rp×p is a p-variate Wishart with m−1

degrees of freedom and covariance matrix Σy

A ,
m∑
i=1

(yi − ȳ)(yi − ȳ)′ ∼ Wp (m− 1,Σy)

3. the sample mean ȳ and the scatter matrix A are independently dis-
tributed

due to this fact, turns out that ȳ, A are sufficient statistics to infer the
value of µy and Σy, indeed due to the facts

E[ȳ] = µy

E[A] = (m− 1)Σy
(6.32)

follows that, given ȳ = ȳ, A = A, one can reasonably estimates for the
parameters µy, Σy of the sample population as

µ̂y = ȳ

Σ̂y = S =
A

m− 1

(6.33)

the random matrix S , A/(m − 1) is nothing but more than the sample
covariance matrix, and it turns out that it is Wishart as well

S ∼ Wp

(
m− 1,

Σy
m− 1

)
(6.34)

this result plays a central role in the LO-MEM corrector.

6.8 Inverse Wishart distribution

6.8.1 Definition and expectation

Definition 8. A p× p random matrix B is said to have the p-dimensional
inverse Wishart distribution with ν degrees of freedom and parameter matrix
V if and only if ν > 2p and its density function is

pB(B; p, ν, V ) =

{
1
K (detB)

− ν2 etr
(
− 1

2B
−1V

)
if B = B′ > 0

0 otherwise
(6.35)
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where the normalizer K is given by

K , 2p
ν−p−1

2 π
p(p−1)

4

p∏
i=1

Γ

(
ν − p− i

2

)
(detV )

− ν−p−1
2 (6.36)

It will be used the notation B ∼ IWp(ν, V ).

The inverse Wishart distribution is the distribution of the inverse of a
Wishart random matrix, indeed hold the following facts:

� if A ∼ Wp(m,Σ) then B , A−1 ∼ IWp(ν , m+ p+ 1, V , Σ−1).

� if B ∼ IWp(ν, V ) then A , B−1 ∼ Wp(m , ν − p− 1,Σ , V −1).

If ν − 2p − 2 > 0, the expected value of an inverse Wishart matrix B ∼
IWp(ν, V ) is

E[B] =
V

ν − 2p− 2
=

Σ−1

m− p− 1
(6.37)

6.8.2 Application

The central property of the inverse Wishart distribution is that it is the
conjugate prior of the Wishart distribution: let Σ = Σ′ > 0 be a unknown
p× p matrix and A = A′ > 0 be the observation of a random matrix A, by
considering the prior model

Σ ∼ IWp(ν, V ) (6.38)

and by considering the likelihood

A|Σ ∼ Wp(m,Σ) (6.39)

follows that, given A = A, the posterior distribution of Σ is

Σ|A ∼ IWp(ν +m,V +A) (6.40)

This important result is the core concept of the GIW filter. Such filter
represents the shape of an extended object with a d × d (with d = 2 if the
object moves on a plane or with d = 3 if the object moves in the space)
symmetric and positive definite (SPD) random matrix X = X ′ > 0 and, in
order to produce a Bayesian estimate of X, assumes that X ∼ IWd(ν, V ).
Then consider as a measure the centered scatter matrix Y generated by
a sample {yi ∈ Rd}ni=1 assumed to be Gaussian, so Y ∼ Wd(n − 1,Σy).
Thanks to these positions, it turns out that the corrected density of X is
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IW2(ν+n− 1, V +Y ), so the Bayesian estimate X produced by GIW filter
is

X̂ = E[X|Y ] =
(V + Y )−1

(ν + n− 1)− 2d− 2
(6.41)

Notice that this is only the underlying idea of the GIW filter and some
important aspects of the estimation process are neglected. For this reason,
the above estimate does not represent the exact estimate produced by the
GIW filter but only an approximation.



Chapter 7

GIW filter

7.1 Summary

This chapter provides the derivation of the first filter, the GIW filter, that is
able to estimate both the position and the shape of a single extended object.
In the first part of the chapter are discussed the main ideas involved to
represent and estimate the jointly the position and the shape of the tracked
object, then GIW predictor and corrector are derived in details. The chapter
ends with the implementation of the GIW filter with the PHD filter for
extended object, which results in the GIW-PHD filter, which is able to track
simultaneously the positions and the shapes of multiple extended objects.

7.2 Elements of the Bayesian solution

A single extended object is modelled by two random variables:

� kinematic state: is a random vector xk modelling the position, ve-
locity, acceleration, etc, of the object. For example, in a 2-dimensional
scenario, a possible choice of xk is the following

xk ,
[
m′k ṁ′k m̈′k

]′ ∈ R2·3 = R6 (7.1)

where:

– mk , [ξk ηk]′ ∈ R2 is the position of the object expressed in
cartesian coordinates;

– ṁk , [ξ̇k η̇k]′ ∈ R2 is the velocity of the object expressed in
cartesian coordinates;
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– m̈k , [ξ̈k η̈k]′ ∈ R2 is the acceleration of the object expressed in
cartesian coordinates.

naturally, one can generalize the expression of the kinematic state by
considering a d-dimensional scenario (in a cartesian framework, the
most common choices are d , 2, d , 3) and by including in the model
the first s− 1 derivatives of the position mk, i.e.

xk ,
[
m′k ṁ′k m̈′k . . . m

(s−1)
k

]′
∈ Rd·s (7.2)

in other words, the kinematic state is a column vector xk ∈ Rn with
dimension n = s · d.

� shape state: is a d × d random matrix Xk modelling the shape of
the object. It is assumed that the matrix Xk is SPD, likewise a non-
singular covariance matrix, thus the locus of points m ∈ Rd satisfying
the quadratic equation

m′Xkm = 1 (7.3)

consist in a d-dimensional hyper-ellipsoide representing the contour
of the shape of the tracked object. For example, in the simple 2-
dimensional cartesian case the shape of the object is represented by an
ellipse in R2, while the extension matrix Xk assumes the simple form

Xk =

[
X11,k X12,k

· X22,k

]
(7.4)

note that the number of extension parameters is not d2 but rather
d · (d + 1)/2 < d2 because the symmetry assumption on Xk (the pa-
rameters are only the diagonal components and the upper (or lower)
triangle components of Xk).

Given the representation xk, Xk of an extended object, the filtering problem
is the following: estimate both xk and Xk in function of the accumulated
sensor measures y1:k , {y1, . . . , yk} according the usual iterative scheme
prescribed by the Bayesian approach. Note that yk is not a proper RFS
because the GIW filter assumes that the cardinality is not random but fixed
to the value nk, i.e.

Yk , {y1,k, . . . ,ynk,k} nk known (7.5)

The predicted and corrected PDFs considered are the joint conditional PDFs

pk|k−1(x,X) , p(xk, Xk|y1:k−1) predicted PDF

pk|k(x,X) , p(xk, Xk|y1:k) corrected PDF
(7.6)
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7.2.1 Prediction

Given the corrected PDF pk−1|k−1(·, ·) at the previous time step k − 1, the
predicted PDF is given by the Chapman-Kolmogorov equation

pk|k−1(x,X) =

∫
ϕk|k−1(x,X|w,W ) pk−1|k−1(w,W ) dw dW (7.7)

this formula can be simplified by making the following assumptions:

1. the shape X is statistically independent from the kinematic x;

2. the shape X does not change rapidly in time.

as one can show, with this positions holds

pk|k−1(x,X) ≈
(∫

ϕk|k−1(x|X,w) pk−1|k−1(w|X) dw

)
︸ ︷︷ ︸

,pk|k−1(x|X)

×
(∫

ϕk|k−1(X|W ) pk−1|k−1(W ) dW

)
︸ ︷︷ ︸

,pk|k−1(X)

(7.8)

which says that the predicted density is given by the product of the following
two separate integrations

pk|k−1(x|X) ,
∫
ϕk|k−1(x|X,w) pk−1|k−1(w|X) dw

pk|k−1(X) ,
∫
ϕk|k−1(X|W ) pk−1|k−1(W ) dW

(7.9)

therefore the kinematic state and the shape state can be predicted separately.
Note that the kinematic state is conditioned on the shape state in order to
take into account its dependence to the shape state.

7.2.2 Correction

Given the actual predicted PDF pk|k(·, ·), the corrected PDF is given by the
Bayes equation

pk|k(x,X) =
`k(y|x,X) pk|k−1(x,X)∫

`k(y|w,W ) pk|k−1(w,W ) dw dW
(7.10)
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assuming that yk is composed by nk IID measures distributed according the
conditional density p(y|x,X), the measurement likelihood gets the following
factorized form

`k(y|x,X) =

(
nk∏
i=1

`k(yi|x,X)

)
(7.11)

where

`k(y|x,X) , p(yk|xk, Xk) (7.12)

is the single-measure likelihood. As mentioned before, in this model the
number of measures nk is not considered random.

7.3 GIW predictor

7.3.1 Kinematic state prediction

The motion model considered for the kinematic state is linear and Gaussian

xk = Φk|k−1 xk−1 +wk (7.13)

where, assuming the same dynamic in every dimension i = 1, 2, . . . , d, the
d-dimensional transition state matrix is given by

Φk|k−1 , Fk|k−1 ⊗ Id (7.14)

where Fk is a 1-dimensional transition state matrix. The term wk is a white
noise with a zero-mean Gaussian distribution

wk ∼ N (0,∆k|k−1) (7.15)

with covariance matrix ∆k|k−1 given by

∆k|k−1 , Dk|k−1 ⊗Xk (7.16)

where Dk|k−1 is the 1-dimensional plant noise. This model states that the
covariance matrix ∆k|k−1 is proportional to the shape Xk of the object. The
reason why the actual model is chosen consists in the fact that permits to
compute the easily the prediction and correction steps.

On the other hand this model does not represents accurately the dynamic
of an extended object because it states that bigger (in its extension) is the
object, more irregular is the motion of the object. Clearly, there is no a
physical justification in support to this feature of the model.
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In summary, the linear-Gaussian motion model considered is the following

xk = (Fk|k−1 ⊗ Id)xk−1 +wk

wk ∼ N (0, Dk|k−1 ⊗Xk)
(7.17)

for suitables matrices Fk|k−1, Dk|k−1. As a consequence, the kinematic tran-
sition density is Gaussian, more precisely1

ϕk|k−1(x|X,w) = N (x; (Fk|k−1 ⊗ Id)w,Dk|k−1 ⊗X) (7.18)

Now, by assuming that the corrected PDF for the kinematic state is Gaussian
with the following structure

pk−1|k−1(x|X) , N (x;xk−1|k−1, Pk−1|k−1 ⊗X) (7.19)

for given xk−1|k−1, Pk−1|k−1, turns out that the predicted PDF for the kine-
matic state is still Gaussian

pk|k−1(x|X) ,
∫
ϕk|k−1(x|X,w) pk−1|k−1(w|X) dw

= N (x;xk|k−1, Pk|k−1 ⊗X)

(7.20)

where the predicted parameters are given by the following Kalman predictor

xk|k−1 , (Fk|k−1 ⊗ Id)xk−1|k−1

Pk|k−1 , Dk|k−1 + Fk|k−1 Pk−1|k−1F
′
k|k−1

(7.21)

7.3.2 Shape state prediction

The prediction for the extension state is a simple heuristic, where it is postu-
lated that the shape state is inverse Wishart, which is the typical distribution
used in the multivariate statistic to represent SPD random matrices. More
precisely, it is assumed that the corrected PDF of the shape state is inverse
Wishart with νk−1|k−1 degrees of freedom and parameter matrix Xk−1|k−1,
so

pk−1|k−1(X) , IWd(X; νk−1|k−1, Xk−1|k−1) (7.22)

while the predicted PDF of the extension state is inverse Wishart with νk|k−1

degrees of freedom and Xk|k−1 scale matrix

pk|k−1(X) , IWd(X; νk|k−1, Xk|k−1) (7.23)

1w that figures in ϕ is not the process noise of the dynamic model, but a generic state
at time k − 1
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the prediction consists only in the time-update of the parameters of the
predicted inverse Wishart, starting from the parameters of the corrected
parameters of the inverse Wishart. The models considered are the following:

νk|k−1 , exp (−T/τ) νk−1|k−1

Xk|k−1 ,
νk|k−1 − d− 1

νk−1|k−1 − d− 1
Xk−1|k−1

(7.24)

where τ is an hyperparameter. The reasons why the actual models are
choosen stem from the following facts:

� time-update of the degrees of freedom: the degrees of freedom
of an inverse Wishart are related to the precision of the corresponding
expectation. Since the prediction step is the operation that increase
the uncertainties, the precision shall decrease as the time T between
two consecutive measurement updates increase. The exponential model
considered takes into account this fact, and the decay parameter τ rep-
resents how much sensitive is the prediction with respect the absolute
value of T .

� time-update of the scale matrix: the second equation of (47) sim-
ply states that the predicted expected value of the shape matrix is the
same as the corrected expected value of the shape matrix, in fact (47)
is equivalent to

Xk|k−1

νk|k−1 − d− 1
=

Xk−1|k−1

νk−1|k−1 − d− 1
≡ Ek|k−1[X] = Ek−1|k−1[X]

(7.25)
in other words, the time-update considered states that it is believed
that the shape matrix doesn’t change too much between a time step and
another. This is reasonable if the sampling interval T is ”small” with
respect the dynamic of the object tracked. In fact, despite the fact that
the width and the length of an extended object are reasonably fixed in
time, the orientation can change a lot between a sampling interval and
another, according to the dynamic behaviour of the object tracked.

7.3.3 Joint kinematic-shape prediction

According to the previous results for the prediction of the kinematic state
and the shape state and the joint predicted density is given by

pk|k−1(x,X) = pk|k−1(x|X) pk|k−1(X)

= N (x;xk|k−1, Pk|k−1 ⊗X) IW(X; νk|k−1, Xk|k−1)

, NIW(x,X;xk|k−1, Pk|k−1, νk|k−1, Xk|k−1)

(7.26)
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whereNIW(µ,Λ, ν,Ψ) denotes the so-called Gaussian-inverse-Wishart prob-
ability density, defined over the product space Rs·d × Sd×d+ , where S+ is the
the space of the SPD matrices, and characterized by the four parameters
µ ∈ Rs·d, Λ ∈ Ss×s+ , ν ∈ R, Ψ ∈ Sd×d+ .

7.4 GIW corrector

7.4.1 Measument model

Let yk ∈ Rp, where p = s̃ · d for some s̃ representing how many variables
are observed in one dimension. The measurement model considered is the
standard linear and Gaussian model

yk = Ck xk + vk (7.27)

where the d-dimensional observation matrix Ck ∈ Rp×s·d is given by

Ck , Hk ⊗ Id (7.28)

for a 1-dimension observation matrix Hk ∈ Rs̃×s. The measurement noise
vk is assumed to be zero mean Gaussian with covariance equal to the shape
matrix

vk ∼ N (0,Xk) (7.29)

this choice for the measurement noise arise from the following considerations.

1. in principle, every measures are scattered around the object because of
the random measurement error (whose covariance is usually denoted
as Rk) and because the reflection points of the objects are randomly
illuminated by the sensors. In order to take into account this two
phenomena one can define the simple model for the effective power of
the measurement noise as

Rk +Xk (7.30)

where the Xk takes into account the fact that bigger is the object and
bigger is the distance between the reflection points, so larger is the
”observed” distance between the measures.

2. due to equation (59), one can see the measures, which are generated
by the individual reflection points with a measurement error Rk, as
generated (only) by the centroid with an equivalent power Rk +Xk.

3. assuming that the object extension is much bigger than the imprecision
of the sensors, i.e. Xk � Rk, the equivalent power of the measurement
noise reduces to Xk, so the actual model is taken in consideration.
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7.4.2 Likelihood

Since the measurement model considered is linear and Gaussian, the single
measure likelihood is Gaussian as well, in particular

`k(y|x,X) = N (y; (Hk ⊗ Id)x,X) (7.31)

as a consequence, the joint likelihood of the set of measures yk , {y1
k, . . . , y

nk
k }

assumes the form

`k(y|x,X) =

nk∏
i=1

N (yi;Ckx,X) (7.32)

as one can show after some simple algebraic manipulations, such likelihood
can be factorized as follows

`k(y|x,X) ∝ N
(
ȳ; (Hk ⊗ Id)x,

X

nk

)
Wp

(
Y ;nk − 1, X

)
(7.33)

where are introduced the following statistics of the measurement set yk

� mean measure: defined as

ȳ ,
1

nk

nk∑
i=1

yik (7.34)

its likelihood is the Gaussian N
(
ȳ; (Hk ⊗ Id)x, Xnk

)
;

� scatter matrix: defined as

Y ,
nk∑
i=1

(yik − ȳ)(yik − ȳ)′ (7.35)

its likelihood is given by the Wishart Wp

(
Y ;nk − 1, X

)
.

7.4.3 Correction

Given the predicted joint density, the corrected density is given by the Bayes
equation. For simplicity, only the numerator of the Bayes equation is dis-
cussed and the normalizing factor is considered absorbed by the proportion-
ality sign. The corrected density can be factorized as follows

pk|k(x,X) ∝ `k(y|x,X) pk|k−1(x,X)

∝
[
N
(
ȳ;Ckx,

X

nk

)
N
(
x;xk|k−1, Pk|k−1 ⊗X

)]
×
[
LW

(
Ȳ ;nk − 1, X

)
IW(X; νk|k−1, Xk|k−1)

] (7.36)
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� Gaussians product: due to the fundamental Gaussian identity, the
first two factors give

N
(
ȳ;Ckx,

X

nk

)
N
(
x;xk|k−1, Pk|k−1 ⊗X

)
= N

(
ȳ; ȳk|k−1, SkX

)
N (x;xk|k, Pk|k ⊗X)

(7.37)
where, as always, the ȳk|k−1, Σk are given by the Kalman predictor

ȳk|k−1 , (Hk ⊗ Id)xk|k−1

Sk ,
1

nk
+Hk Pk|k−1H

′
k

(7.38)

while xk|k and Πk|k are given by the Kalman corrector

Lk , Pk|k−1HkS
−1
k

Pk|k , (I − LkHk)Pk|k−1

xk|k , xk|k−1 + (Lk ⊗ Id)(ȳ − ȳk|k−1)

(7.39)

now note that the first factor on the RHS doesn’t depends on the
kinematic state xk but only on the shape state Xk. Due to this fact,
it is convenient to express such factor in the following pseudo inverse
Wishart form

N
(
ȳ; ȳk|k−1, SkX

)
∝ |X|− 1

2 etr

(
−1

2
NkX

−1

)
(7.40)

where it is introduced the spread matrix

Nk , (ȳ − ȳk|k−1)(ȳ − ȳk|k−1)′S−1
k (7.41)

in conclusion,

N
(
ȳ;Ckx,

X

nk

)
N
(
x;xk|k−1, Pk|k−1 ⊗X

)
= |X|− 1

2 etr

(
−1

2
NkX

−1

)
N (x;xk|k, Pk|k ⊗X)

(7.42)

� Complete product: the corrected density gets the form

pk|k(x,X) = N (x;xk|k, Pk|k ⊗X)F (X) (7.43)
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where

F (X) , |Xk|−
1
2 etr

(
−1

2
NkX

−1

)
×Wp

(
Ȳ ;nk − 1, X

)
IWd(X; νk|k−1, Xk|k−1)

(7.44)

after some elementary calculations, turns out that

F (X) ∝ IWd

(
X; νk|k, Xk|k

)
(7.45)

where are introduced the corrected parameters

νk|k , νk|k−1 + nk

Xk|k , Xk|k−1 +Nk + Ȳ
(7.46)

in conclusion, the corrected density has the following final Gaussian
inverse Wishart form

pk|k(x,X) ∝ N (x;xk|k, Pk|k ⊗X) IWd

(
X; νk|k, Xk|k

)
(7.47)

7.4.4 Joint kinematic-shape correction

The corrected density is proportional to a Gaussian inverse Wishart

pk|k(x,X) ∝ NIW
(
x;xk|k, Pk|k, νk|k, Xk|k

)
(7.48)

where the Gaussian parameters are given by the Kalman corrector (wich acts
on the measures ȳ of to the object centroid)

Lk , Pk|k−1HkS
−1
k

Pk|k , (Is − LkHk)Pk|k−1

xk|k , xk|k−1 + Lk[ȳ − (Hk ⊗ Id)xk|k−1]

(7.49)

and the inverse Wishart parameters are given by

νk|k , νk|k−1 + nk

Xk|k , Xk|k−1 +Nk + Ȳ
(7.50)

7.5 GIW estimates

Given the corrected densityNIW
(
xk|k, Pk|k, νk|k, Xk|k

)
, the kinematic state

and the shape state are estimated as follows

x̂k|k , xk|k

X̂k|k ,
Xk|k

νk|k − 2p− 2

(7.51)
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moreover the covariance of the kinematic state is

Πk|k , Pk|k ⊗ X̂k|k (7.52)

7.6 PHD implementation

7.6.1 GIW-PHD model

By denoting the augmented true state of the generic object as the (s·d+d2)×1
column vector

ξk ,
[
x′k (vech[Xk])′

]′
(7.53)

follows that the RFS model considered by the GIW-PHD is

Xk+1 = f(Xk) ∪ Bk

Yk = h(Xk) ∪ Ck
(7.54)

where, as usual,

� the RFS of survived objects f(Xk) is multi-Bernoulli with parameters
{pS(ξ), ϕk+1|k(·|ξ)}ξ∈Xk , where pS(ξ) is the probability that the object
ξ survives and ϕk+1|k(ξ′|ξ) is the probability that the object ξ, knowing
that survives, moves in ξ′. Due to the linear-Gaussian motion model
considered, the transition density (relative only to the kinematic state)
has the Gaussian form

ϕk|k−1(x′|X ′, x,X) , N (x′; (Fs ⊗ Id)x,Ds ⊗X ′) (7.55)

� the RFS of birthed objects Bk is Poisson with intensity IB(·). The
simple choice of the GIW-PHD filter here is

IB(ξ) ,
νB∑
i=1

wiBNIW
(
x,X; x̂iB, P

i
B, ν

i
B, V

i
B

)
(7.56)

where the parameters are defined by the designer of the filter;

� the RFS of detections h(Xk) is a mixed Bernoulli-Poisson RFS with pa-
rameters {pD(ξ), ID(·|ξ)}ξ∈Xk , where pD(ξ) is the probability that ob-
ject ξ is detected and ID(·|ξ) is the intensity of the detections produced
by ξ. Since the measurement model considered is linear-Gaussian, the
detection intensity is

ID(y|ξ) , λ|y|D

∏
y∈y
N (y; (Hs̃,s ⊗ Id)x,X) (7.57)

� the RFS of clutter measures Ck is Poisson with intensity IC(·).
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7.6.2 GIW-PHD predictor

Theorem 13. Consider the GIW model and suppose that the corrected
PHD at time k − 1 is the following non-normalized mixture of Gaussian
Inverse Wishart densities

Dk−1|k−1(ξ)

=

νk−1|k−1∑
i=1

wik−1|k−1NIW
(
ξ; x̂ik−1|k−1, P

i
k−1|k−1, ν

i
k−1|k−1, V

i
k−1|k−1

)
(7.58)

then the predicted PHD is given by

Dk|k−1(ξ) = IB(ξ) +DS
k|k−1(ξ) (7.59)

where the PHD of survived objects is the following non-normalized mixture
of Gaussian Inverse Wishart densities

DS
k|k−1(ξ) =

νk−1|k−1∑
i=1

wik|k−1NIW
(
ξ; x̂ik|k−1, P

i
k|k−1, ν

i
k|k−1, V

i
k|k−1

)
(7.60)

where the predicted weights are

wik|k−1 , pS w
i
k−1|k−1 (7.61)

the predicted parameters for the kinematic state are

x̂ik|k−1 , (Fs ⊗ Id)xik−1|k−1

P ik|k−1 , Fs P
i
k−1|k−1F

′
s +Ds

(7.62)

while the predicted parameters for the shape state are

νik|k−1 , exp(−T/τ) νik−1|k−1

V ik|k−1 ,
νk|k−1 − d− 1

νk−1|k−1 − d− 1
Vk−1|k−1

(7.63)

Proof

The objective is to compute the following PHD

DS
k|k−1(ξ′) = Dk−1|k−1

[
ϕ̃k|k−1(ξ′)

]
=

νk−1|k−1∑
i=1

pS w
i
k−1|k−1︸ ︷︷ ︸

,wi
k|k−1

[ ∫
ϕk|k−1(ξ′|ξ)

×NIW
(
ξ; x̂ik−1|k−1, P

i
k−1|k−1, ν

i
k−1|k−1, V

i
k−1|k−1

)
dξ

]
(7.64)
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now by factorizing the transition density as

ϕk|k−1(ξ′|ξ) = ϕk|k−1(x′|X ′, x,X)ϕk|k−1(X ′|x,X) (7.65)

and assuming that ϕk|k−1(X ′|x,X) = ϕk|k−1(X ′|X), follows∫
ϕk|k−1(ξ′|ξ)NIW

(
ξ; x̂ik−1|k−1, P

i
k−1|k−1, ν

i
k−1|k−1, V

i
k−1|k−1

)
dξ

=

∫
N (x′; (Fs ⊗ Id)x,Ds ⊗X ′) N

(
x; x̂ik−1|k−1, P

i
k−1|k−1 ⊗X

)
dx︸ ︷︷ ︸

kinematic part

×
∫
ϕk|k−1(X ′|X)IW

(
X; νik−1|k−1, V

i
k−1|k−1

)
dX︸ ︷︷ ︸

shape part

(7.66)

kinematic part

with the additional assumption that X ≈ X ′, the integral involving the kine-
matic part can be solved by applying the foundamental Gaussian identity,
yielding after some basic computations to∫

N (x′; (Fs ⊗ Id)x,Ds ⊗X ′) N
(
x; x̂ik−1|k−1, P

i
k−1|k−1 ⊗X

)
dx

= N
(
x′; x̂ik|k−1, P

i
k|k−1 ⊗X

′
) (7.67)

where
x̂ik|k−1 , (Fs ⊗ Id)x̂k−1|k−1

P ik|k−1 , Fs P
i
k−1|k−1 F

′
s +Ds

(7.68)

shape part

the integral involving the extension part is heuristically defined, whatever
it is the form of the transition density ϕk|k−1(X ′|X), to be the following
inverse Wishart∫
ϕk|k−1(X ′|X) IW

(
X; νik−1|k−1, V

i
k−1|k−1

)
dX , IWd

(
X ′; νik|k−1, V

i
k|k−1

)
(7.69)

where
νik|k−1 , exp(−T/τ)νik−1|k−1

V ik|k−1 ,
νk|k−1 − d− 1

νk|k − d− 1
V ik−1|k−1

(7.70)
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joint kinematic-shape state

the combination of (38), (39) and (41) yields to the Gaussian inverse Wishart
density∫

ϕk|k−1(ξ′|ξ)NIW
(
ξ; x̂ik−1|k−1, P

i
k−1|k−1, ν

i
k−1|k−1, V

i
k−1|k−1

)
dξ

= NIW(ξ′; x̂ik|k−1, P
i
k|k−1, ν

i
k|k−1, V

i
k|k−1)

(7.71)
and so, according to (36),

DS
k|k−1(ξ′) =

νk−1|k−1∑
i=1

wik|k−1NIW(ξ′; x̂ik|k−1, P
i
k|k−1, ν

i
k|k−1, V

i
k|k−1) (7.72)

which complete the proof.

7.6.3 GIW-PHD corrector

In order to simplify the derivation of the GIW-PHD corrector, the cell like-
lihood is derived before the complete corrector. In what follows will be
assumed s̃ = 1, so only the position is measured, and denoted in short
C , H1,s ⊗ Id. Moreover, the central factorization will be expressed in the
terms of the mean measure ȳw and scatter matrix Y w of a generic cell of
measures w, i.e.

∏
y∈w
N (y;Cx,X) =Wd(Y w, |w| − 1, X)︸ ︷︷ ︸

,Laux

·N
(
ȳw;Cx,

X

|w|

)
(7.73)

where

ȳw ,
1

|w|
∑
y∈w

y Ȳw ,
∑
y∈w

(y − ȳw)(y − ȳw)′ (7.74)

Theorem 14. Assumes that y is a d-dimensional position-only measure,
then [∏

y∈w
N (y;Cx,X)

]
· NIW

(
x,X;xik|k−1, P

i
k|k−1, ν

i
k|k−1, V

i
k|k−1

)
=

Lw,i · NIW
(
x,X;xw,ik|k, P

w,i
k|k , ν

w,i
k|k, V

w,i
k|k

)
(7.75)
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where the cell likelihood Lw,i is given by

Lw,i , (πd|w|Sw,i |w|)−
1
2

(
det[V ik|k−1]

)νik|k−1/2

(
det[V w,i

k|k ]
)νw,i

k|k/2

Γd

(
νw,ik|k/2

)
Γd

(
νik|k−1/2

) (7.76)

with Γd(·) denoting d-variate Gamma function,

Γd(x) , π
d(d−1)

4

d∏
i=1

Γ

(
x− i− 1

2

)
(7.77)

and the parameters of the Gaussian inverse Wishart density are the following:

� kinematic part:

Sw,i ,
1

|w|
+H1,sP

i
k|k−1H

′
1,s

ŷik|k−1 , Cx
i
k|k−1

Lw,i , P
i
k|k−1H

′
1,s S

−1
w,i

Pw,i
k|k , (Is − Lw,iH1,s)P

i
k|k−1

xw,ik|k , x
i
k|k−1 + (Lw,i ⊗ Id)

(
ȳw − ŷik|k−1

)
(7.78)

� shape part:

Nw,i ,
(ȳw − ŷik|k−1)(ȳw − ŷik|k−1)′

Sw,i

νw,ik|k , ν
i
k|k−1 + |w|

V w,i
k|k , V

i
k|k−1 + Ȳw +Nw,i

(7.79)

Proof

Start from the followin relationship,[∏
y∈w
N (y;Cx,X)

]
· NIW

(
x,X;xik|k−1, P

i
k|k−1, ν

i
k|k−1, V

i
k|k−1

)
=

Laux · N
(
ȳw;Cx,

X

|w|

)
· N

(
x;xik|k−1, P

i
k|k−1 ⊗X

)
· IW

(
X; νik|k−1, V

i
k|k−1

)
(7.80)
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the product between the two Gaussians give rise, thanks to the fundamental
Gaussian identity and the basic properties of the Kronecker product, to the
factorization

N
(
ȳw;Cx,

X

|w|

)
· N

(
x;xik|k−1;P ik|k−1 ⊗X

)
= N

(
x;xw,ik|k, P

w,i
k|k ⊗X

)
· N

(
ȳw; ŷik|k−1, Sw,iX

) (7.81)

where

Sw,i ,
1

|w|
+H1,sP

i
k|k−1H

′
1,s

ŷik|k−1 , Cx
i
k|k−1

Lw,i , P
i
k|k−1H

′
1,s S

−1
w,i

Pw,i
k|k , (Is − Lw,iH1,s)P

i
k|k−1

xw,ik|k , x
i
k|k−1 + (Lw,i ⊗ Id)

(
ȳw − ŷik|k−1

)
(7.82)

so that[∏
y∈w
N (y; (H1,s ⊗ Id)x,X)

]
· NIW

(
x,X;xik|k−1, P

i
k|k−1, ν

i
k|k−1, V

i
k|k−1

)
=

N
(
x;xw,ik|k, P

w,i
k|k ⊗X

)
· N

(
ȳw; ŷik|k−1, Sw,iX

)
· Laux · IWd

(
X; νik|k−1, V

i
k|k−1

)
︸ ︷︷ ︸

,F

(7.83)
the factor F , by using the abbreviations ν , νik|k−1, V , V ik|k−1, can be
written as follows

F = K1 (det[X])
− |w|+ν+d+1

2 etr

[
−1

2

(
Nw,i + Ȳw + V

)
X−1

]
(7.84)

where

K1 , (2π)−
d|w|

2 (Sw,i |w|)−
1
2

(det[V ])
ν
2

2
ν d
2 Γd

(
ν
2

)
Nw,i ,

(ȳw − ŷik|k−1)(ȳw − ŷik|k−1)′

Sw,i

(7.85)

now the normalization constant K1 can be adjusted in order to write F in
terms of an inverse Wishart with parameters νw,ik|k , |w| + νik|k−1, V w,i

k|k ,
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Nw,i + Ȳw + V ik|k−1. The objective is to introduce the normalizer

K2 ,

(
det[Nw,i + Ȳw + V ]

) |w|+ν
2

2
(|w|+ν) d

2 Γd

(
|w|+ν

2

) (7.86)

in the expression of the factor F , so

F =
K1

K2︸︷︷︸
,Lw,i

K2 · (det[X])
− |w|+ν+d+1

2 etr

[
−1

2

(
Nw,i + Ȳw + V

)
X−1

]
︸ ︷︷ ︸

=IWd(X;νw,i
k|k,V

w,i
k|k)

(7.87)

the cell likelihood Lw,i, after some algebra, can be written in a more clear
form as follows

Lw,i ,
K1

K2
= (πd|w|Sw,i |w|)−

1
2

(
det[V ik|k−1]

)νik|k−1/2

(
det[V w,i

k|k ]
)νw,i

k|k/2

Γd

(
νw,ik|k/2

)
Γd

(
νik|k−1/2

)
(7.88)

Theorem 15. Consider the GIW-PHD model and suppose that the pre-
dicted PHD at time k−1 is the following non-normalized mixture of Gaussian
inverse Wishart densities

Dk|k−1(ξ) =

νk|k−1∑
i=1

wik|k−1NIW
(
ξ; x̂ik|k−1, P

i
k|k−1, ν

i
k|k−1, V

i
k|k−1

)
(7.89)

and assume that all the heuristic considerations of the GIW filter hold (in-
cluding the hypothesis that y is a d-dimensional vector - so position-only
measures are considered). Then the corrected PHD is given by

Dk|k(ξ) = DND
k|k−1(ξ) +

∑
P�y

∑
w∈P

DD
k|k−1(ξ,w) (7.90)

where the PHD of undetected objects is the following mixture of Gaussian
inverse Wishart densities

DND
k|k−1(ξ) =

νk|k−1∑
i=1

wik|kNIW
(
ξ; x̂ik|k−1, P

i
k|k−1, ν

i
k|k−1, V

i
k|k−1

)
(7.91)

with
wik|k , [1− pD · (1− exp (−λD))] wik|k−1 (7.92)
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and the PHD of detected objects in w is

DD
k|k−1(ξ,w) =

νk|k−1∑
i=1

wi,wk|kNIW
(
ξ; x̂i,wk|k, P

i,w
k|k , ν

i,w
k|k, V

i,w
k|k

)
(7.93)

with

ww,i
k|k , ωP

˜̀
w,i

dw

˜̀
w,i , pD · exp(−λD) ·

(
λD

IC

)|w|
· Lw,i · wik|k−1

dw , δ1(|w|) +

νk|k−1∑
i=1

˜̀
w,i

ωP ,

∏
w∈P dw∑

P�y
∏

w′∈P dw′

(7.94)

Proof

The PHD of non-detected object is trivivally given by

DND
k|k (ξ) = ΛND(y|ξ)Dk|k−1(ξ)

=

νk|k−1∑
i=1

[1− pD · (1− exp (−λD))] wik|k−1︸ ︷︷ ︸
,wi

k|k

×NIW
(
ξ; x̂ik|k−1, P

i
k|k−1, ν

i
k|k−1, V

i
k|k−1

)
(7.95)

Now the turn of the detected PHD,

DD
k|k(ξ) = ΛD(y|ξ)Dk|k−1(ξ)

=
∑
P�y

∑
w∈P

νk|k−1∑
i=1

ωP

˜̀
w w

i
k|k−1NIW

(
ξ; x̂ik|k−1, P

i
k|k−1, νk|k−1, Vk|k−1

)
dw︸ ︷︷ ︸

,DD
k|k(ξ,w)

(7.96)
focus on the product between the likelihood ˜̀

w and the Gaussian inverse
Wishart density inside the summation in i. For the GIW model holds

˜̀
w = pD · exp (−λD) ·

∏
y∈w

λD · N (y;Cx,X)

IC

= pD · exp (−λD)

(
λD

IC

)|w|
·
∏
y∈w
N (y;Cx,X)

(7.97)
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consequently,

˜̀
w · NIW

(
ξ;xik|k−1, P

i
k|k−1, ν

i
k|k−1, V

i
k|k−1

)
= pD · exp (−λD)

(
λD

IC

)|w|
· Lw,i · NIW

(
ξ;xw,ik|k, P

w,i
k|k−1, ν

w,i
k|k−1, V

w,i
k|k−1

)
(7.98)

which permits to write the detected PHD as

DD
k|k(ξ,w) =

νk|k−1∑
i=1

ωP
˜̀
w,i

dw
· NIW

(
ξ;xw,ik|k, P

w,i
k|k−1, ν

w,i
k|k−1, V

w,i
k|k−1

)
(7.99)

with

˜̀
w,i , pD · exp (−λD)

(
λD

IC

)|w|
· Lw,i · wik|k−1 (7.100)

and

dw = δ1(|w|) +

νk|k−1∑
i=1

˜̀
w,i (7.101)
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Chapter 8

MEM-EKF* filter

8.1 Summary

In this chapter is discussed the second type of filter for extended objects
that is capable to estimate the shape of the tracked object, i.e. the MEM-
EKF* filter. Unlike the GIW filter, which was born to track the flocks of
multiple independent point objects1 (the estimated ellipse, in fact, represents
the shape of the flock), the MEM-EKF* is specifically designed to track
extended object. This fact can be seen from the following properties, that
are reflecting the dynamic of an extended object, of the MEM-EKF* filter:

� the variance of the position of the estimated ellipse is independent on
its area. For the GIW filter such variance is proportional to the area
of the estimated ellipse;

� the variance of the orientation angle of the estimate ellipse can be
choose independently from the variance of its two radii. For the GIW
filter such variances are equals;

As a consequence, the MEM-EKF* filter achieves better performance than
the GIW filter when this two algorithms are compared in an estimation
problem involing an extended object (rather than a cluster object).

The chapter is structured as follows

� in the first part are introduced preliminary concepts, such a how the
MEM-EKF* represents the shape of an extended object and the what
type of measurement vectors are employed to perform the correction
step.

1in literature this type of estimand is usually called cluster object
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� then are discussed the standard motion and measurement model and
the single extended object predictor and corrector;

� in the final part is introduced an improved and more general version
of the standard MEM-EKF* (which differs from the standard version
in the motion model) deviced to track manuevering objects and after
that the PHD extension of the general MEM-EKF* filter.

In the first part of the chapter is discussed how the MEM-EKF* represents
mathematically the shape of the object and

8.2 Shape parametrization

One of the main difference between the GIW filter and the MEM-EKF* filter
is that the shape of an object is not parametrized by the independent entries
of the shape matrix but it is parametrized by the director angles and the
diameters of the representing ellipsoide.

For example consider the planar case, here the shape parameters of the
GIW filter are X11, X12, X22 forming the shape matrix

X =

[
X11 X12

· X22

]
(8.1)

while the shape parameters of the MEM-EKF* filter are:

� l1 ∈ R+, the biggest diameter of the representing ellipse, called lenght
of the object. Since an extended object is assumed to be rigid, the real
length is a quantity that it is considered fixed in time. From the point
of view of the estimation, the length is well represented by a random
variable with a small variance;

� l2 ∈ R+, the smallest diameter of the representing ellipse, called width
of the object. Once again, due to rigidity of the objects, the real width
is a quantity that it is considered fixed in time as well. Likewise the
length, the width is well represented by a random variable with a small
variance;

� θ ∈ [0, 2π], the angle between the horizontal axis of the reference frame
and the lenght of the representing ellipse, called orientation of the ob-
ject. Since an extended object can moves in space, the real orientation,
in the same manner as the real position of the object, is a time varying
quantity. From the point of view of the estimation, the orientation is
well represented by a random variable with large variance.
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In what follows, it will be always assumed for simplicity that the tracking
problem is planar. However, with some effort the MEM-EKF* filter can be
adjusted to solve also tracking 3-dimensional problems.

The relationship between X and the MEM-EKF* parameters f θ, l1, l2
is clear in the planar case: since X is symmetric, it is possible to compute
its spectral decomposition.

X = V ΛV ′ (8.2)

where V is an orthonormal matrix, and thus, due to planar assumption, can
be expressed as

V =

[
cosθ − sinθ
sinθ cosθ

]
(8.3)

while Λ is diagonal matrix whose diagonal elements are the eigenvalues λ1,
λ2 of X,

Λ =

[
λ1 0
0 λ2

]
. (8.4)

Now, since X ≥ 0, the eigenvalues are λ1, λ2 ≥ 0 and consequently the
spectral decomposition of X can be also expressed in the following form

X = SS′ (8.5)

where it is introduced the profile matrix

S , V
√

Λ =

[
cosθ − sinθ
sinθ cosθ

] [√
λ1 0
0

√
λ2

]
(8.6)

the random matrix S depends on θ, which is the orientation angle, and
√
λ1,√

λ2, which are the length and width l1, l2. In conclusion, the MEM-EKF*
filter expresses X in terms of θ, l1, l2.

Thanks to the special parametrization choosen, the MEM-EKF* filter
can track separately the orientation, the lenght and the width of an extended
object. This feature, in concjunction to the fact that in a typical scenario l1
and l2 are fixed in time while θ is time varying, permits the MEM-EKF* to
achieve better performace than the GIW filter.

However there is a price to be paid, which consists in the introduction of
a new and highly non-linear measurement model called multiplicative error
model (MEM).

8.3 Multiplicative error model

In this section is derived the MEM model, which expresses how a measure
vector y is generated by the tracked object .
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The MEM model assumes that y ∈ R2 is a position-only measure ex-
pressed in cartesian coordinates. Moreover, due to the fact that the object
tracked is assumed to be extended, the MEM-EKF* assumes that at every
time step are available multiple measures y1

k, . . .ynkk , where nk is assumed
to be known. Every measure is assumed to be originated by a random point
z on the surface of the object and corrupted by an additive Gaussian noise
v.

yk = zk + vk

vk ∼ N (0, Rv)
(8.7)

the problem is to relate z with the shape parameters l1, l2, θ. In the next
subsections this task is achieved step-by-step by considering different shape
models.

8.3.1 Unit disc

Assume that the object is positioned in the origin of the reference frame and
its shape is a disc with unitary radius. In this case a random point z ∈ R2

on the object surface can be expressed as follows[
zξ
zη

]
︸ ︷︷ ︸
z

=

[
h1

h2

]
︸ ︷︷ ︸
h

(8.8)

where, if C0,1 , {h ∈ R2 : h2
1 + h2

2 ≤ 1}, the random vector h ∈ R2 is
uniformly distributed on the disc C0,1

h ∼ U (C0,1)

the reason why the uniform model is choosen arise from the fact that in
general in a tracking problem the points of an extended object are equally
visible. The random vector h is called multiplicative error and its moments
are

E[h] =

[
0
0

]
Cov[h] =

[
1
4 0
0 1

4

]
, Rh (8.9)

the origin of its name will be more clear in the next subsections.
In conclusion, trivially, z is uniformly distributed over the unit disc C ,

{ξ, η ∈ R : ξ2 + η2 ≤ 1} of measurement space

z ∼ U(C) (8.10)

which means that represents a random point of the extended object.
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8.3.2 Aligned ellipsoidal disc

Assume that the object is positioned in the origin of the reference frame and
its shape is a disc with radii l1, l2 alligned to the axis of the reference frame.
In this case a random point z ∈ R2 on the object surface can be expressed
as follows [

zξ
zη

]
=

[
l1h1

l2h2

]
≡

[
zξ
zη

]
︸ ︷︷ ︸
z

=

[
l1 0
0 l2

]
︸ ︷︷ ︸
E(l1,l2)

[
h1

h2

]
︸ ︷︷ ︸
h

(8.11)

note that now the multiplicative error h is scaled by the extension matrix
E(l1, l2): for this fact is called multiplicative, while is referred as an error
because it is random.

Since h ∼ U(C0,1), the generic point z is uniformly distributed over the
ellipsoidal disc with radii l1, l2

z ∼ U(Elll1,l2)

Elll1,l2 ,

{
ξ, η ∈ R :

(
ξ

l1

)2

+

(
η

l2

)2

≤ 1

}
(8.12)

thus z represents a random point of the extended object.

8.3.3 Misaligned ellipsoidal disc

Now assume that the object is still positioned in the origin and its shape
is ellipsoidal, but assume that the object is misaligned with respect the
reference frame according to an orientation angle θ. In this case holds[

zξ
zη

]
=

[
cosθ l1h1 − sinθ l2h2

sinθ l1h1 + cosθ l2h2

]
≡[

zξ
zη

]
︸ ︷︷ ︸
z

=

[
cosθ − sinθ
sinθ cosθ

]
︸ ︷︷ ︸

R(θ)

[
l1 0
0 l2

]
︸ ︷︷ ︸
E(l1,l2)

[
h1

h2

]
︸ ︷︷ ︸
h

(8.13)

and, as a consequence of the randomness of h, z is uniformly distributed
over the ellipsoidal disc Ellθ,l1,l2

z ∼ U(Ellθ,l1,l2)

Ellθ,l1,l2 ,

{
ξ, η ∈ R :

(
cosθ ξ − sinθ η

l1

)2

+

(
sinθ ξ + cosθ η

l2

)2

≤ 1

}
(8.14)
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if, moreover, the object is positioned in a generic point m ∈ R2, the model
for z gets the form[

zξ
zη

]
=

[
mξ + cosθ l1h1 − sinθ l2h2

mη + sinθ l1h1 + cosθ l2h2

]
≡[

zξ
zη

]
︸ ︷︷ ︸
z

=

[
mξ

mη

]
︸ ︷︷ ︸
m

+

[
cosθ − sinθ
sinθ cosθ

]
︸ ︷︷ ︸

R(θ)

[
l1 0
0 l2

]
︸ ︷︷ ︸
E(l1,l2)

[
h1

h2

]
︸ ︷︷ ︸
h

(8.15)

from which follows that z is uniformly distributed over the ellipsoidal disc
Ellm,θ,l1,l2

z ∼ U(Ellm,θ,l1,l2)

Ellm,θ,l1,l2 ,

{
ξ, η ∈ R :

(
cosθ (ξ −mξ)− sinθ (η −mη)

l1

)2

+

(
sinθ (ξ −mξ) + cosθ (η −mη)

l2

)2

≤ 1

} (8.16)

meaning that z represents a random point on the surface of the extended
object considered.

8.3.4 MEM equation

The simplest form of the MEM is the following

yk = mk +R(θk)E(l1, l2)hk + vk (8.17)

which can be written in a more compact and general form. By introducing
the following quantities

� kinematic state: 2s-dimensional vector containing the position m
of the object and its first s − 1 derivatives (whereas s is a design
parameter)

r ,
[
m′ ṁ′ . . . (m(s−1))′

]′
(8.18)

� shape state: 3-dimensional vector containing the shape parameters

p ,
[
θ l1 l2

]′
(8.19)

� observation matrix: matrix that maps r to m

H ,
[
I2 02×(s−1)

]
(8.20)
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� profile matrix: matrix that encodes the roto-dilation perfomed over
the measurement error h

S(p) , R(θ)E(l1, l2) =

[
cosθ l1 − sinθ l2
sinθ l1 + cosθ l2

]
(8.21)

note that S(p) is a random matrix and its distribution, which is sig-
nificantly complex to be derived, is induced by the distribution of p.

turns out the final expression of the MEM

yk = Hrk + S(pk)hk + vk (8.22)

in conclusion, the MEM splits the measure yk in the sum of three terms:

1. the first one, Hrk, expresses the location where yk will be generated.
Such location is a neighborhood of the position of the extended object,
i.e. the centroid mk;

2. the second, S(pk)hk, expresses the fact the yk can be generated by any
point zk of the extended object, which is not necessarely the centroid
mk. This term encodes the shape of the object;

3. the third, vk, expresses the fact that yk is measured with some error,
so yk does not contain the exact position zk of a random point on the
surface of extended object.

8.4 Linearized multiplicative error model

According to the MEM, the state of an extended object is the (2s + 3)-
dimensional vector

x ,
[
r′ p′

]′
(8.23)

and its easy to see that the relationship between the state x and the measure
y, because of the shape term S(p), is non-linear. Due to this fact, the
MEM-EFK* corrector requires a linear approximation of the term S(p)h.
By considering p̂ as the center of the linearization, follows

S(p)h ≈ S(p̂)h+ Jp̂(p− p̂) (8.24)

where the Jacobian J of S(p)h evaluated in p̂, as one can show, has the
following structure

Jp̂ ,
∂S(p)h

∂p

∣∣∣∣
p̂

=

[
h′J1

h′J2

]
(8.25)
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and J1 and J2 are respectively the Jacobians in p̂ = [θ̂ l̂1 l̂2]′ of the first row
S1(p) and second row S2(p) of the profile matrix S(p), i.e.

J1 ,
∂(S1(p))′

∂p

∣∣∣∣
p̂

=
∂

∂p

[
cosθ l1
− sinθ l2

]
p̂

=

[
− sin θ̂ l̂1 cos θ̂ 0

− cos θ̂ l̂2 0 − sin θ̂

]
J2 ,

∂(S2(p))′

∂p

∣∣∣∣
p̂

=
∂

∂p

[
sinθ l1
cosθ l2

]
p̂

=

[
− cos θ̂ l̂1 sin θ̂ 0

− sin θ̂ l̂2 0 cos θ̂

] (8.26)

the linear form of the MEM is

yk ≈ Hrk + S(p̂k)hk + Jp̂k(pk − p̂k) + vk (8.27)

As a final remark note that, on the other hand, the GIW corrector does
not require any approximation on its measurement model (which is linear by
itself).

8.5 Pseudo-measurement model

Besides the 2-dimensional measure y, the MEM-EKF* filter considers an
additional vector Y ∈ R3, called pseudo-measure, to perform the correction
step. As will be shown, y will be used to get the corrected estimate of the
kinematic state r, while Y will be used to get the corrected estimate of the
shape state p. For this reason Y is introduced besides y.

In the next subsections is discussed the definition of the model for Y
and a an intuitive explanation about why Y is used to perform the shape
correction.

8.5.1 Definition

Let µy = [µy,ξ µy,η]′ be the expected value of the generic measure vector
y = [yξ yη]′, then the pseudo-measure Y ∈ R3 is defined as

Y ,

 (yξ − µy,ξ)2

(yη − µy,η)2

(yξ − µy,ξ)(yη − µy,η)

 (8.28)

in words, the pseudo measures is a vector that contains the quadratic devi-
ations of the measure from its expected value.

Its easy to see that the pseudo-measure can be written in the following
algebraic form

Y = F [(y − µy)⊗ (y − µy)] (8.29)
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where

F ,

1 0 0 0
0 0 0 1
0 1 0 0

 (8.30)

8.5.2 Motivation

Assume for simplicity that Rv = 0 (no measurement noise) and assume to
know exactly the kinematic state r and the shape p of the object. Despite
these positions, the measure y is still uncertain because it is not known what
specific point z = Hr+S(p)h of the object will be observed. This fact can be
easily seen mathematically from the expression of MEM, which now reduces
to

y = Hr + S(p)h (8.31)

here the multiplicative error h, which acts as a point selector, is still random,
so y is random as well. It follows immediately that the covariance of y,
denoted as Σy, is

Σy = S(p)RhS(p)′ =
S(p)S(p)′

4
(8.32)

On the other hand, according to the general definition of covariance ma-
trix,

Σy , E[(y − µy)(y − µy)′] (8.33)

thus by comparing the two expressions of Σy and by switching the represen-
tation from matricial to vectorial follows

E[Y ] =
F

4
vec [S(p)S(p)′] (8.34)

which shows that the pseudo-measures Y is a random vector that is disperse
around a particular transformation of the shape p of the tracked object.
Hence Y , up to the corrupting noise, contains information about p and thus
it make sense to use it to get the corrected estimate of p.

8.6 Linearized pseudo-measurement model

It is clear that the pseudo-measure Y is related to the object state x through
a non-linear function. The MEM-EKF* corrector requires also a linear ap-
proximation of the pseudo-measurement model. In order to get such ap-
proximation, start by observing that, as h and v are zero-mean noises, holds

µy = Hµr (8.35)
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where µr is the expected value of the kinematic state r. Consequently, it
follows that the non-linear relation between Y and x is

g(r,p) ,

 (H1(r − µr) + S1(p)h+ vξ)
2

(H2(r − µr) + S2(p)h+ vη)2

(H1(r − µr) + S1(p)h+ vξ)(H2(r − µr) + S2(p)h+ vη)


(8.36)

where H1 and H2 are the first and the second row of the observation matrix
H. By applying the chain rule, turns out that the Jacobians of g(·, ·) are
respectively

∂g1

∂r
= 2 (H1(r − µr) + S1(p)h+ vξ)H1

∂g2

∂r
= 2(H2(r − µr) + S2(p)h+ vη)H2

∂g3

∂r
= (H1(r − µr) + S1(p)h+ vξ)H2

+ (H2(r − µr) + S2(p)h+ vη)H1

∂g1

∂p
= 2(H1(r − µr) + S1(p)h+ vξ)h

′J1

∂g2

∂p
= 2(H2(r − µr) + S2(p)h+ vη)h′J2

∂g3

∂p
= (H1(r − µr) + S1(p)h+ vξ)h

′J2

+ (H2(r − µr) + S2(p)h+ vη)h′J1

(8.37)

thus, in conclusion, if x̂ , [r̂′ p̂′]′ is the center of the linearization, the
linearized pseudo-measurement model is

Y ≈ g(x̂) +
∂ g

∂x

∣∣∣∣
x̂

(x− x̂) (8.38)

where

∂ g

∂x
=


∂g1

∂r
∂g1

∂p
∂g2

∂r
∂g2

∂p
∂g3

∂r
∂g3

∂p

 (8.39)

8.7 Motion model

The motion model considered by the MEM-EKF* filter consists in two parts,
which are the kinematic motion model, which tries to represent the time
evolution of the position of the object, and the shape motion model, which
tries to represent the time evolution of the shape of the object.
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8.7.1 Kinematic motion model

It is defined as the following linear model

rk+1 = Ar rk +wr
k (8.40)

where Ar is constant matrix and wr ∼ N (0, Qr) is a zero-mean Gaussian
white noise. The typical choice for the transition matrix Ar is the following

Ar , Toep(s, T )⊗ I2 (8.41)

where T is the sampling interval and Toep(s, T ) denotes a Toeplitz matrix2

with first row r0,s−1,T and first colum cs defined as follows

ra,b,T ,
[
Ta

a!
Ta+1

(a+1)!
Ta+2

(a+2)! . . . T b

b!

]
cc ,

[
1 01×(c−1)

]′ (8.42)

for example, if s = 2 the transition matrix gets the explicit form

Ar , Toep(2, T )⊗ I2 =

[
1 T
0 1

]
⊗
[
1 0
0 1

]
=


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (8.43)

in other words, the choice for the transition matrix corresponds to model
the kinematic state rk with a so-called linear cynematic motion model. For
s , 2 the generic linear cynematic motion model is referred as nearly constant
velocity (NCV) motion model, for s , 3 as nearly constant acceleration
(NCA) motion model.

8.7.2 Shape motion model

It is defined as the following linear motion model

pk+1 = Ap pk +wp
k (8.44)

where Ap is constant matrix and wp ∼ N (0, Qp) is a zero-mean Gaussian
white noise. The typical choice for the transition matrix is

Ap , I3 (8.45)

2a Toeplitz matrix is a matrix in which each descending diagonal from left to right is
constant. Consequently, a Toeplitz matrix is identified by only its first row and its first
column (with the constraint that the first element of the previous row and column has to
be the same)
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encoding the fact that the shape parameters change slowly in time. This
is particularly true for the lenght and the width variables, but for the ori-
entation angle this model can be inaccurate if the tracked object exhibits a
fast-maneuvering motion.

8.8 Measurement model

The measurement model considered by the MEM-EKF* filter consists in two
parts, which are the MEM and pseudo-measurement model

yk = Hrk + S(pk)hk + vk

Y k = F [(yk − µy,k)⊗ (yk − µy,k)]
(8.46)

the MEM-EKF* filter deals with the non-linearities of this model similarly
to an extended Kalman filter because it uses the Jacobians Jp̂ and ∂g/∂p|p̂
to compute the covariance matrices of the corrected estimates. For this
reason the shorthand EKF, which indeed stands for extended Kalman filter,
figures in the name MEM-EKF*. The shorthand MEM, clearly, stands for
multiplicative error model and figures in the name MEM-EKF* in order
to remind the special model employed to represent the relation between a
measure and the state of the object.

8.9 MEM-EKF* predictor

Since the motion model is linear, the MEM-EKF* compute a standard
Kalman prediction. By denoting as r̂ and p̂ the estimates and as P r, P p

their covariances, the MEM-EKF* predictor gets the form

r̂k|k−1 = Ar r̂k−1|k−1

P rk|k−1 = Ar P
r
k−1|k−1A

′
r +Qr

(8.47)

for the kinematic state, and gets the form

p̂k|k−1 = Ap p̂k−1|k−1

P pk|k−1 = Ap P
p
k−1|k−1A

′
p +Qp

(8.48)

for the shape state. Note that, since the covariance matrix Qp is a design
parameter, the MEM-EKF* can filter out the noise from the corrected esti-
mates θ̂k|k, l̂1,k|k, l̂2,k|k with different intensities. This effect can be obtained
by defining, for example,

Qp , diag(σ2
θ , σ

2
l , σ

2
l ) (8.49)
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with σ2
θ 6= σ2

l (typicially σ2
θ � σ2

l ). As just mentioned before, this is the
most important feature that allows the MEM-EKF* filter to achieve better
performance with respect the GIW filter.

8.10 MEM-EKF* corrector

The correction step is way less straightforward since the measurement model
is not linear. First of all, since the tracked object is assumed to be extended,
at every time step k are available nk measures

yk , {y(1)
k , . . . , y

(nk)
k } (8.50)

which are, according to the MEM, 2-dimensional position-only measures.
Likewise the GIW filter, the MEM-EKF* corrector assumes that nk is known
and that the measurements are statistically independent. Due to this po-
sitions, the MEM-EKF* corrector performs sequentially |yk| = nk single-
measurement corrections,

r̂
(0)
k|k , r̂k|k−1

p̂
(0)
k|k , p̂k|k−1

y
(1)
k−−→

r̂
(1)
k|k

p̂
(1)
k|k

y
(2)
k−−→

r̂
(2)
k|k

p̂
(2)
k|k

. . .
y

(nk)

k−−−→
r̂k|k , r̂

(nk)
k|k

p̂k|k , p̂
(nk)
k|k

For each observed measurement y
(i)
k , the MEM-EKF* corrector performs two

operations:

� kinematic state correction: compute r̂
(i)
k|k, P

(i),r
k|k according to r̂

(i−1)
k|k ,

P
(i−1),r
k|k−1 and the observed measurement y

(i)
k ;

� shape state correction: compute firstly Y
(i)
k according to y

(i)
k and

r̂
(i)
k|k, then compute p̂

(i)
k|k, P

(i),p
k|k according to p̂

(i−1)
k|k−1, P

(i−1),p
k|k−1 and the

observed pseudo-measurement Y
(i)
k .

8.10.1 Kinematic state correction

The correction of the kinematic state is given by the so-called best linear
unbiased estimation (BLUE) correction equations

r̂
(i)
k|k = r̂

(i−1)
k|k−1 + Σry Σ−1

y (y
(i)
k − ŷ

(i−1)
k|k−1)

P
(i),r
k|k = P

(i−1),r
k|k−1 − Σry Σ−1

y Σ′ry
(8.51)

at his point the problem is to derive the explicit expressions of the moments

ŷ
(i)
k|k−1, Σry, Σy according to the MEM.
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� predicted measurement: by expressing equation in terms of the
accumulated information available up to time k and up to measurement

y
(i−1)
k turns out

ŷ
(i)
k|k−1 = Hr̂

(i−1)
k|k−1 (8.52)

� measurement covariance: according to the linearized form of the
MEM, one can show that

Σy ≈ HP (i−1)
k|k−1H

′ + CI + CII +Rv (8.53)

where

– the first term is the covariance of the predicted measurement

ŷ
(i−1)
k|k−1 = Hr̂

(i−1)
k|k−1;

– the second term CI is defined as

CI , S(p̂
(i−1)
k|k−1)RhS(p̂

(i−1)
k|k−1)′ =

S(p̂
(i−1)
k|k−1)S(p̂

(i−1)
k|k−1)′

4
(8.54)

and it is the covariance of the term S(p̂
(i−1)
k|k−1)hk;

– the third term CII is defined as

CII ,

[
CII

11 CII
12

CII
21 CII

22

]
with

CII
ij , tr

[
P

(i−1),p
k|k−1 J ′jRh Ji

]
=

tr
[
P

(i−1),p
k|k−1 J ′jJi

]
4

(8.55)

and it is the covariance of the term Jp̂k(pk − p̂k);

– the fourth term Rv is the covariance of vk.

� kinematic cross-covariance: trivially is given by

Σry = P
(i−1),r
k|k−1 H ′ (8.56)

8.10.2 Shape state correction

Likewise teh kinematic state correction, the correction of the shape state
is performed using the BLUE equations, with the difference that now the

considered observation is the pseudo-measurement Y
(i)
k rather than the mea-

surement y
(i)
k . Hence, the correction equations gets the following form

p̂
(i)
k|k = p̂

(i−1)
k|k−1 + ΣpY Σ−1

Y (Y
(i)
k − Ŷ (i−1)

k|k−1)

P
(i),p
k|k = P

(i−1),p
k|k−1 − ΣpY Σ−1

Y Σ′pY
(8.57)
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now the problem consists into compute the moments Ŷ
(i−1)
k|k−1, ΣY , ΣpY

according to the pseudo-measurement model. Note that, given the ob-

served measurement y
(i)
k and its prediction y

(i−1)
k|k−1, the theoretical pseudo-

measurement vector (???) reduces to the observed pseudo-measurement vec-
tor

Y
(i)
k = F [(y

(i)
k − y

(i−1)
k|k−1)⊗ (y

(i)
k − y

(i−1)
k|k−1)] (8.58)

� predicted pseudo-measurement:, the predicted pseudo-measurement
is

Y
(i)
k|k−1 = Fvec[Σy] (8.59)

;

� pseudo-measurement covariance: as one can show, according to a
result due to Isserli, the exact expression of the pseudo-measurement
covariance is

ΣY = F (Σy ⊗ Σy)(F + F̃ )′ (8.60)

where

F̃ =

1 0 0 0
0 0 0 0
0 0 1 0

 (8.61)

� shape cross-covariance: according to the linearized form of the
pseudo-measurement model, one can show that

ΣpY ≈ P (i−1)
k|k−1M

′
p̂ (8.62)

where

Mp̂ ,


2S1(p̂

(i−1)
k|k−1)RhJ1

2S2(p̂
(i−1)
k|k−1)RhJ2

S1(p̂
(i−1)
k|k−1)RhJ2 + S2(p̂

(i−1)
k|k−1)RhJ1



=
1

4


2S1(p̂

(i−1)
k|k−1)J1

2S2(p̂
(i−1)
k|k−1)J2

S1(p̂
(i−1)
k|k−1)J2 + S2(p̂

(i−1)
k|k−1)J1


(8.63)

8.11 MEM-EKF* filter for manuvering objects

One limitation of the standard MEM-EKF* filter is that, since it consider a
linear motion model, it can not track accurately manuevering objects that
change rapidly (in relation to the sampling interval T ) their orientation. This
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problem can be solved easily by changing the definition of the kinematic state
r with the introduction of the steering speed

ω , θ̇ (8.64)

and its first O − 1 derivatives ω̇, . . . , ω(O−1) as a new kinematic state
variables.

8.11.1 Constant turn MEM-EKF* filter

In the simple case O = 1 the new definition of kinematic state is

r ,
[
m′ ṁ′ . . . (m(s−1))′ ω

]′
(8.65)

accordingly, the motion models get the new forms

rk+1 = Arrk +wr
k

pk+1 = Aprrk +Appk +wp
k

(8.66)

where the transitions matrix are

Ar , diag(Toep(s, T )⊗ I2, 1) Ap , I3 Apr ,

[
01×s T
02×s 02×1

]
(8.67)

consequently, the new prediction equations are

r̂k|k−1 = Ar r̂k−1|k−1

P rk|k−1 = ArP
r
k−1|k−1A

′
r +Qr

p̂k|k−1 = Apr r̂k−1|k−1 +App̂k|k−1

P pk|k−1 = AprP
rp
k−1|k−1A

′
pr +ApP

p
k−1|k−1A

′
p +Qp

(8.68)

on the other hand, the measurement actual model still holds but with
the new convention

H ,
[
I2 02×2(s−1) 0

]
(8.69)

hence the new definition of the kinematic state does not change the correction
equations.

The resulting algorithm is called constant turn (CT) MEM-EKF* filter,
and can handle objects that performs manuevers characterized by steering
speeds that change slowly in time.
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8.11.2 General MEM-EKF* filter

If the steering speed ω change rapidly (in relation to the sampling interval
T ), one can consider O > 1 big enough. In this case the kinematic state is

r ,
[
m′ ṁ′ . . . (m(s−1))′ ω ω̇ . . . ω(O−1)

]′
(8.70)

and the new motion and measurement models still holds, with the conven-
tions

Ar , diag(Toep(s, T )⊗ I2,Toep(O, T ))

Apr ,

[
01×s r1,O−1,T

02×s 02×O

]
Ap , I3

(8.71)

and

H ,
[
I2 02×2(s−1) 02×O

]
(8.72)

the resulting algorithm is the most general case of the MEM-EKF* filter
and, for this reason, is called general MEM-EKF* filter. This filter can
track reasonably well objects that performs manuevers characterized by a
ω(O−1) that changes slowly in time.

8.12 PHD implementation

While the PHD extension of the GIW filter relys on the rigourous equations
of the general PHD filter for extended objects, the PHD extension of the
MEM-EKF* filter follows a more direct way by considering the GM-PHD
equations for extended objects.

In other words, the PHD filter based on the MEM-EKF* filter is a spe-
cial GM-PHD filter for extended objects (meaning that the GM-APB-PHD
corrector is employed) where the state of an object does not consist only on
the kinematic variables but also on the shape variables.

8.12.1 Predictor

The state of a generic extended object is defined as

x ,
[
r′ p′

]′
(8.73)

and the relative motion model as

xk+1 = Axk +wk

wk ∼ N (0, Q)
(8.74)
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where
A , diag(Ar, Ap) Q , diag(Qr, Qp) (8.75)

consequently the transition density gets the following Gaussian form

ϕk|k−1(x|w) = N (x;Aw,Q) (8.76)

and so, by assuming a Gaussian mixture prior, the GM-PHD predictor (???)
holds. The predicted PHD is

Dk|k−1(x) = DB(x) +DS(x) (8.77)

where the new born objects PHD DB(·) is

DB(x) =

νB∑
i=1

wBN (x;xB,i, PB,i) (8.78)

while the survived objects DS(·), assuming pS constant, is given by

DS(x) =

νk−1|k−1∑
i=1

wk|k−1,iN (x;xk|k−1,i, Pk|k−1,i)

wk|k−1,i , pS wk−1|k−1,i

xk|k−1,i , Axk−1|k−1,i

Pk−1|k−1,i , APk−1|k−1,iA
′ +Q

(8.79)

8.12.2 Corrector

The corrector is defined more heuristically with respect to the predictor. The
idea is to embed the MEM-EKF* corrector into the corrected PHD provided
by the GM-APB-PHD corrector, which is

Dk|k(x) = DND(x) +
∑
P�y

∑
w∈P

DD(x;P,w) (8.80)

where

� assuming pD and λD constant, the non-detected objects PHD DND(·)
is

DND(x) =

νk|k−1∑
i=1

wk|k,iN (x;xk|k−1,i, Pk|k−1,i)

wk|k,i , [1− (1− exp(−λD)) pD]wk|k−1,i

(8.81)
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� the detected objects PHD DD(·;P,w) is given by

DD(x;P,w) =

νk|k−1∑
i=1

wP,w,ik|k N (x;xw,ik|k, P
w,i
k|k )

wP,w,ik|k , ωP
˜̀
w,i

dw

˜̀
w,i , pD exp(−λD)

(
λD

IC

)|w|
Lw,i

dw , δ1(|w|) +

νk|k−1∑
i=1

˜̀
w,i

ωP ,

∏
w∈P dw∑

P�y
∏

w∈P dw

(8.82)

where the cell likelihood3 is defined as

Lw,i ,
∏
y∈w
N (y; yik|k−1, S

i) (8.83)

and the corrected parameters xw,ik|k, Pw,i
k|k , yw,ik|k−1, Sw,i are given by the

Kalman corrector equations (by correcting the state of object i ac-
cording to cell of measures w, which is represented by the joint vector
yw).

The PHD extension of the MEM-EKF* changes the definitions of the cell
likelihood and the corrected parameters.

Cell likelihood

Since the MEM-EKF* perform the correction according to y, Y , the cell
likelihood is defined according to the model of the joint vector

Y ,
[
y′ Y ′

]′
(8.84)

here there as some critical observations about the model of Y:

� the model for y is

py|i(y) , N (y; yik|k−1,Σ
i
y) (8.85)

3the cell likelihood is a function that measures how much likely is the event ”object i
have generated the cell of measurements w”
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where, according to the MEM moments,

yik|k−1 , Hr̂k|k−1,i

Σiy , HP
r,i
k|k−1H

′ + CI,i + CII,i +Rv
(8.86)

and r̂k|k−1,i, P
r,i
k|k−1, CI,i, CII,i are moments relative to the predicted

object i. This model is reasonable if the covariance of pk|k−1,i is small:
in this case y is, with a good approximation, Gaussian;

� the model for Y is

pY |i(Y ) , N (Y ;Y ik|k−1,Σ
i
Y ) (8.87)

where, according to the pseudo-measurement moments,

Y ik|k−1 , Fvec[Σiy]

ΣiY , F (Σiy ⊗ Σiy)(F + F̃ )′
(8.88)

This model is a rough approximation because, clearly, Y is not Gaus-
sian. To see why, it is sufficient to observe that the first two com-
ponenst of Y are non-negative random variables because are squared
innovations. On the other hand, a Gaussian random variable can get
a realization that is negative, hence Y is not Gaussian.

then, by exploiting the fact that y and Y are independently distributed
(because, as one can show, Y is an uncorrelated transformation of y), the
joint model, which defines also the cell likelihood, gets the factorized form

Lw,i , pY|i(Y) = py|i(y)pY |i(Y )

= N

(
Y;

[
yik|k−1

Y ik|k−1

]
,

[
Σiy 0
0 ΣiY

])
(8.89)

Corrected parameters

Finally, the |P| · νk|k−1 corrected parameters xw,ik|k, Pw,i
k|k are computed by an

ensamble of |P| · νk|k−1 MEM-EKF* filters, where each filter performs the
correction of the predicted object i, which is characterized by the predicted
parameters xw,ik|k−1, Pw,i

k|k−1, according to the cell of measurements w.



Chapter 9

LO-MEM filter

9.1 Summary

This chapter, which contains the main contribution of this thesis, is dedicated
to the derivation of the LO-MEM filter, a new algorithm for the extended
object tracking. In short, the LO-MEM filter is a slight modification of
the MEM-EKF* filter, where are considered a new prediction model, called
Lambda:Omicron model, and a new measurement model (always based on
the MEM).

The chapter has the following structure:

� in the first part is defined the Lambda:Omicron model. Firstly it is
introduced in two simple forms (the 1:0 model and the 2:1 model), then
its general form is derived;

� in the second part is discussed the new measurement model, which is
slight modification of the measurement model considered by the MEM-
EKF* filter;

� in the final part are derived the equations of the LO-MEM predictor
and corrector, then the PHD extension is discussed.

9.2 Lambda:Omicron motion model

9.2.1 Motivation

The two extended object trackers, i.e. the GIW filter and the MEM-EKF*
filter, share the fact that the estimation process of the object shape depends
on the estimate of the object center. In fact,

165
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� for the GIW filter, the corrected shape matrix X̂k|k can be written as

X̂k|k =
Xk|k−1 + (ȳ − ȳk|k−1)(ȳ − ȳk|k−1)′S−1

k + Y

νk|k − 2p− 2
(9.1)

which depends on ȳk|k−1 = Cxk|k−1, i.e. the predicted estimation of
the object center;

� for the MEM-EKF* filter, the corrected shape vector pk|k is computed
according the following BLUE equation

p
(i)
k|k−1 = p

(i−1)
k|k−1 + ΣrY Σ−1

Y F
[
(y

(i)
k − y

(i)
k|k−1)⊗ (y

(i)
k − y

(i−1)
k|k−1)− Σy

]
(9.2)

which depends on ȳ
(i−1)
k|k−1 = Hr

(i−1)
k|k−1, that is the predicted estimate of

the object center.

If the object center is poorly estimated then, for both filters, the shape of
the object cannot be estimated with accuracy. As a consequence, a key issue
is the estimation of the object kinematic state because on it both localization
accuracy and shape estimation depend crucially.

The GIW and the MEM-EKF* filters assume a linear motion model for
the kinematic state, which implies that the tracked object moves along a
line. Clearly this is a limiting factor from the point of view of the kinematic
state estimation, because in general the trajectory of an object, represented
by the trajectory of its center, can be curved.

Idea

The Lambda:Omicron model is a new type of motion model designed for the
MEM-EKF* filter that, in order to increase the accuracy of the predictions
of the kinematic state (which, as just explained, reflects also in a better
estimation of the object shape), tries to represent curved trajectories.

In order to do that, the starting point is the so-called unicycle motion
model

mk+1 = mk + T

[
cosθk
sinθk

]
vk +wm,k

vk+1 = vk +wv,k

θk+1 = θk + Tωk +wθ,k

ωk+1 = ωk +wω,k

(9.3)

where:

� m = [ξ η]′ is the object position expressed in Cartesian coordinates;
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� v = ‖ṁ‖ is magnitude of the velocity vector ṁ;

� θ = tan−1(η/ξ) is the angle of the velocity vector ṁ;

� ω = θ̇ is the time-derivative of the velocity vector angle θ.

This model can be cast in the extended object tracking problem by assuming
that θ is the orientation angle of object or, in other words, that the extended
object can only move along its longitudinal direction (lateral movements
are not considered by the unicycle model). A limitation of the unicycle
model is that, unlike a linear kinematic model, the model state is fixed to
r , [m′ v θ ω]′. The Lambda:Omicron model tries to solve this limitation
by including in the model higher order derivatives of v and ω.

9.2.2 Drawback

The major drawback of the Lambda:Omicron model is that, likewise the
unicycle model, it cannot represents lateral motions. This is a clear limita-
tion because, in general, it is not true that an object moves only along its
longitudinal direction.

For example, consider a boat that moves from an edge of a river to the
other one. Due to the flow of the river, the velocity of the boat is not
perfectly aligned to the boat heading direction.

Despite this negative fact, in some contexts the assumption that the
velocity vector is aligned to the object orientation is reasonable or at least a
good first order approximation.

9.2.3 Nomenclature

The name Lambda:Omicron, which is directly inspired by the name Alpha-
Beta filter used to refer a special stationary Kalman filter, arises from the
fact that, as will be shown (see section 1.2.6), the new motion model consists
of two independent parts:

� Lambda model: describes the dynamics of the longitudinal speed

v , ‖ṁ‖ (9.4)

where m is the object position, and its first Λ − 1 derivatives v̇, . . . ,
v(Λ−1). Here Λ ≥ 0 is a design parameter called linear order. If only
this part is considered (for convention O = 0, where O is defined in
Omicron part) then the trajectory is a line. Hence the name ”Lambda”
recalls this fact by abbreviating the word ”line”. For Λ = 0, the model
represents a stationary trajectory (the object does not move);
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� Omicron model: describes the dynamics of the steering speed

ω , θ̇ (9.5)

where θ is the orientation of the object, and its first O− 1 derivatives
ω̇, . . . , ω(O−1). Here O ≥ 0 is a design parameter, which can be
chosen independently from Λ, called angular order. If Λ = 1, then
the trajectory is a circle. Here the name ”Omicron” recalls this fact
because the letter Omicron resembles the shape of a circle. For O = 0,
the model represents a rectilinear trajectory (the object moves on a
straight line).

9.2.4 Examples of Lambda:Omicron motion models

Naturally, each choice of Λ and O gives rise to a different type of motion
model. The simplest examples of Lambda:Omicron models are the following:

� 0:0 motion model: represents the trajectory of a completely station-
ary object which does not change its position or orientation. Clearly,
this is not an useful model for a tracking problem;

� 0:1 motion model: this model represents the trajectory of a station-
ary object which does not change its position but changes its orien-
tation with a constant turning rate. Once again, this is not a useful
model for a tracking problem;

� 1:0 motion model: this is the simplest useful model and represents
a uniform rectilinear motion. This model is suitable if it is known that
the object moves along a line with a constant speed;

� 1:1 motion model: represents a uniform circular motion. This model
is suitable if it is known that the object moves on a circle with a
constant speed. It turns out that the 1:1 motion model is nothing but
more the well-known unicycle motion model ;

� 2:0 motion model: represents a rectilinear uniformly accelerated
motion. This model is suitable if it is known that the object moves on
a line with a constant acceleration;

� 2:1 motion model: this model is suitable if it is known that the object
moves on a cirlce with a constant acceleration and steering speed. This
is the simplest model that can represent a trajectory with non-constant
curvature.
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9.2.5 1:0 motion model

Vanilla 1:0 motion model

Consider the following NCV motion model, where the center of the object is
m , [ξ η]′ and the sampling interval is T ,

ξk+1 = ξk + T ξ̇k +wξ,k

ηk+1 = ηk + T η̇ +wη,k

ξ̇k+1 = ξ̇k +wξ̇,k

η̇k+1 = η̇k +wη̇,k

. (9.6)

By expressing the velocity vector ṁ , [ξ̇ η̇]′ in polar coordinates v, θ, i.e.
by using the change of variables

ξ̇ = v cosθ

η̇ = v sinθ
(9.7)

where it is assumed that the velocity vectorm is aligned with the orientation
of the object, so that θ represents the orientation angle, the NCV equations
can be written in the following compact form

mk+1 = mk + Tf
(1)
‖ (vk,θk) +wm,k

vk+1 = vk +wv,k

θk+1 = θk +wθ,k

(9.8)

where it is introduced the nonlinear function

f
(1)
‖ (v,θ) ,

[
cosθ
sinθ

]
v. (9.9)

These Equations define the 1:0 motion model and

� the first two equations in m and v define the first order lambda model ;

� the third equation in θ defines the zero order omicron model.

Augmented 1:0 motion model

At this point, in order to integrate the 1:0 model with the formalism of the
MEM-EKF* filter, the model is augmented with the two following additional
motion equations for the lenght l1 and width l2 of the object

l1,k+1 = l1,k +wl1,k

l2,k+1 = l2,k +wl2,k

(9.10)
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by introducing the kinematic state r , [m′ v]′ and the shape state p ,
[θ l1 l2]′, the model can be written more coincisely as

rk+1 = fr(rk,pk) +wr,k

pk+1 = pk +wp,k

(9.11)

where

fr(r,p) ,

[
m+ Tf

(1)
‖ (v,θ)

v

]
. (9.12)

Note that, unlike the MEM-EKF* motion model, which treats r and p sep-
arately, now the first equation depends on p, so r and p are coupled. In
order to treat r and p jointly, it is convenient to define the state of the ex-
tended object as x , [r′ p′]′, so that the final expression of the augmented
1:0 motion model is

xk+1 = f(xk) +wk (9.13)

where the global transition function is

f(x) ,

[
fr(r,p)
p

]
(9.14)

9.2.6 2:1 motion model

Vanilla 2:1 motion model

Consider the following NCA motion model,

ξk+1 = ξk + T ξ̇k +
T 2

2
ξ̈k +wξ,k

ηk+1 = ηk + T η̇ +
T 2

2
η̈k +wη,k

ξ̇k+1 = ξ̇k + T ξ̈k +wξ̇,k

η̇k+1 = η̇k + T η̈k +wη̇,k

ξ̈k+1 = ξ̈k +wξ̈,k

η̈k+1 = η̈k +wη̈,k

(9.15)

by expressing the velocity vector ṁ , [ξ̇ η̇]′ in polar coordinates v, θ, where
as the previous case it is assumed that the velocity vector m is aligned to
the object orientation, follows that

ξ̈ = v̇ cosθ + vω(− sinθ)

η̈ = v̇ sinθ + vω cosθ
(9.16)
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where it is introduced the longitudinal acceleration v̇ and the steering speed
ω, defined as

v̇ ,
dv

dt
ω ,

dθ

dt
. (9.17)

Sampling these equations according to the sampling interval T and assuming
that ω and v̇ are stationary up to small zero-mean Gaussian fluctuations
wω,k, wv̇,k, the following equations are obtained

vk+1 = vk + T v̇k +wv,k

v̇k+1 = v̇k +wv̇,k

θk+1 = θk + Tωk+1 +wθ,k

ωk+1 = ωk +wω,k

(9.18)

consequently,

ξk+1 = ξk + T vk cosθk +
T 2

2
[v̇k cosθk + vkωk(− sinθk)] +wξ,k

ηk+1 = ηk + T vk sinθk +
T 2

2
[v̇k sinθk + vkωk cosθk] +wη,k

vk+1 = vk + T v̇k +wv,k

v̇k+1 = v̇k +wv̇,k

θk+1 = θk + Tωk +wθ,k

ωk+1 = ωk +wω,k

(9.19)

which can be expressed coincisely as

mk+1 = mk + Tf
(1)
‖ (λk,θk) +

T 2

2

(
f

(2)
‖ (λk,θk) + f

(2)
⊥ (λk,ωk,θk)

)
+wm,k

λk+1 = Aλλk +wλ,k

θk+1 = θk + Tωk +wθ,k

ωk+1 = ωk +wω,k

(9.20)
where

λ ,

[
v
v̇

]
Aλ , Toep (1, T ) (9.21)

and the nonlinear functions

f
(1)
‖ (λ,θ) ,

[
cosθ
sinθ

]
v f

(2)
‖ (λ,θ) ,

[
cosθ
sinθ

]
v̇ f

(2)
⊥ (λ,ω,θ) ,

[
− sinθ
cosθ

]
vω

(9.22)
These equations are the 2:1 model and
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� the first two equations in m and λ define, according to, the second
order lambda model ;

� the last two equations in θ and ω define the first order omicron model.

Augmented 2:1 motion model

Now, by including in the model the radii equations and by defining the
kinematic state r , [m′ λ′ ω]′ and the shape state p , [θ l1 l2]′, follows
that the augmented 2:1 model can be written as

rk+1 = fr(rk,pk) +wr,k

pk+1 = pk +Aprrk +wp,k

(9.23)

where

Apr ,

01×4 T
01×4 0
01×4 0

 fr(r,p) ,

m+ Tf
(1)
‖ (λ,θ) + T 2

2

(
f

(2)
‖ (λ,θ) + f

(2)
⊥ (λ,ω,θ)

)
Aλλ
ω

 .
(9.24)

Finally, in terms of the global state x , [r′ p′]′, the augmented 2:1 motion
model assumes the form

xk+1 = f(xk) +wk (9.25)

where the global transition function is

f(x) ,

[
fr(r,p)
p+Aprr

]
(9.26)

9.2.7 General Lambda:Omicron motion model

Vanilla N :N − 1 motion model

Consider the following linear kinematic model of order N + 1, where N ≥ 0
is a design parameter, for the center m , [ξ η]′ of the object,

m̃k+1 = Am̃m̃k +wm̃,k (9.27)

where

m̃ ,
[
m′ . . . (m(N))′

]′
Aµ̃ , Toep (N,T )⊗ I2 (9.28)

by introducing the polar change of variables (with the usual assumption that
the velocity vector m is alligned to the angle orientation)

ṁ = f
(1)
‖ (v,θ) (9.29)
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and by expressing also m̈,
...
m, . . . , m(N) in terms of the new variables

λ ,
[
v v̇ . . . v(Λ,N)

]′
o ,

[
ω ω̇ . . . ω(O,N−1)

]′ (9.30)

via the relations

ṁ =
df

(1)
‖ (v,θ)

dt
. . . m(N) =

dNf
(1)
‖ (v,θ)

dtN
(9.31)

it turns out, by assuming the model

λk+1 = Aλλk +wλ,k

ok+1 = Aook +wo,k

Aλ , Toep(Λ , N,T )

Ao , Toep(O , N − 1, T )
, (9.32)

that equation is equivalent to

mk+1 = mk +

N∑
i=1

T i

i!
f (i)(λk,ok,θk) +wm,k

λk+1 = Aλλk +wλ,k

θk+1 = θk +Aθook +wθ,k

ok+1 = Aook +wo,k

(9.33)

where
Aθo , r1,O,N−1,T

f (i)(λ,o,θ) ,
di−1

dti−1
f

(1)
‖ (v,θ) i = 1, 2, . . . N

. (9.34)

Observation 2. The generic nonlinear function f (i)(·) can always be de-
composed in the following form

f (i)(λ,o,θ) = f
(i)
‖ (λ,o,θ) + f

(i)
⊥ (λ,o,θ) (9.35)

where, for suitable scalars k
(i)
‖ (·) and k

(i)
⊥ (·) depending on λ and o,

f
(i)
‖ (λ,o,θ) =

[
cosθ
sinθ

]
k

(i)
‖ (λ,o) f

(i)
⊥ (λ,o,θ) =

[
− sinθs

cosθ

]
k

(i)
⊥ (λ,o).

(9.36)
A simple induction shows that the decomposition holds for any i. The base
of the induction is expressed, for example, by the 2:1 model where f (1), f (2)
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are explicitly computed and then decomposed in f
(1)
‖ , f

(1)
⊥ and f

(2)
‖ , f

(2)
⊥ . To

show the induction step, suppose that the decomposition holds for a generic
i and compute f (i+1) as follows

f (i+1) ,
df (i)

dt
=

d

dt

[[
cosθ
sinθ

]
k

(i)
‖

]
+

d

dt

[[
− sinθ
cosθ

]
k

(i)
⊥

]
=

[
cosθ
sinθ

]
(k̇

(i)
‖ − ωk

(i)
⊥ )︸ ︷︷ ︸

,k(i+1)

‖︸ ︷︷ ︸
,f(i+1)

‖

+

[
− sinθ
cosθ

]
(ωk

(i)
‖ + k̇

(i)
⊥ )︸ ︷︷ ︸

,k(i+1)
⊥︸ ︷︷ ︸

f
(i+1)
⊥

. (9.37)

Note that the decomposition still holds also for i = 1 by considering the
convention

f
(1)
⊥ (λ,o,θ) , 02×1 =

[
− sin θ
cos θ

]
k

(1)
⊥︸︷︷︸
,0

. (9.38)

According to the decomposition, it turns out that

mk+1 = mk +

N∑
i=1

T i

i!

[
f

(i)
‖ (λk,ok,θk) + f

(i)
⊥ (λk,ok,θk)

]
+wm,k

λk+1 = Aλλk +wλ,k

θk+1 = θk +Aθook +wθ,k

ok+1 = Aook +wo,k

(9.39)

which is the N :N − 1 model and

� the first two equations in m and λ define the lambda model of order
Λ , N ;

� the last two equations in θ and ω define the omicron model of order
O , N − 1.

In some scenarios one can be interested in more accurate estimation of
λ rather than o (or viceversa). In this case (or the other one), the quality
of the estimate of λ (o) can be improved by increasing Λ (O). However, the
N : N − 1 model does not allow the designer to increase the linear order Λ
(angular order O) without increasing also the angular order O (linear order
Λ).
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In order to overcome this limitation, the general Lambda:Omicron model
generalizes the N : N − 1 motion model in a way such that Λ and O can be
potentially chosen without satisfying the constraint Λ = O+1. On the other
hand, the major flexibility of the generalized model is paid with the price
of not having a direct correspondence with a familiar motion model such as
the generic linear kinematic motion model.

Vanilla Lambda:Omicron motion model

Given two generic orders Λ, O, let

N , max(Λ, O − 1) (9.40)

and observe the following fact:

� case Λ = O − 1: trivially, N = Λ and the N : N − 1 model holds;

� case Λ > O − 1: in this case N = Λ and by defining

õ ,
[
o′ 01×Λ−O−1

]′
(9.41)

the N : N − 1 model applys with the following convention

mk+1 = mk +

Λ∑
i=1

T i

i!

[
f

(i)
‖ (λk, õk,θk) + f

(i)
⊥ (λk, õk,θk)

]
+wm,k

λk+1 = Aλλk +wλ,k

θk+1 = θk +Aθook +wθ,k

ok+1 = Aook +wo,k

(9.42)

� case Λ < O − 1: in this case N = O − 1 and by defining

λ̃ ,
[
λ′ 01×O−Λ+1

]′
(9.43)

the N : N − 1 model applys with the following convention

mk+1 = mk +

Λ∑
i=1

T i

i!

[
f

(i)
‖ (λ̃k,ok,θk) + f

(i)
⊥ (λ̃k,ok,θk)

]
+wm

λk+1 = Aλλk +wλ

θk+1 = θk +Aθook +wθ

ok+1 = Aook +wo,k

(9.44)
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The (general) Lambda:Omicron model, which applys in all three cases,
is the following

mk+1 = mk +

max(Λ,O−1)∑
i=1

T i

i!

[
f

(i)
‖ (λ̃k, õk,θk) + f

(i)
⊥ (λ̃k, õk,θk)

]
+wm,k

λk+1 = Aλλk +wλ,k

θk+1 = θk +Aθook +wθ,k

ok+1 = Aook +wo,k

(9.45)
where are defined the padded lambda vector λ̃ and the padded omicron
vector õ as

λ̃k ,
[
λ′ 01×max(O−Λ+1,0)

]′
õk ,

[
o′ 01×max(Λ−O−1,0)

]′ . (9.46)

In conclusion,

� the first two equations are the general Lambda model of order Λ;

� the last two equations are the general Omicron model of order O.

Augmented Lambda:Omicron motion model

By including in the Lambda:Omicron model the radii equations and by defin-

ing the kinematic state r , [m′ λ̃
′
õ′]′ and the shape state p , [θ l1 l2]′,

turns out the augmented model

rk+1 = fr(rk,pk) +wr,k

pk+1 = pk +Aprrk +wp,k

(9.47)

where

Apr ,

01×2Λ Aθo
01×2Λ 01×O
01×2Λ 01×O

 fr(r,p) ,

m+
∑max(Λ,O−1)
i=1

T i

i!

(
f

(i)
‖ (λ̃, õ,θ) + f

(i)
⊥ (λ̃, õ,θ)

)
Aλλ
Aoo


(9.48)

now, by defining the global state x , [r′ p′]′ follows the compact expression

xk+1 = f(xk) +wk (9.49)

where the transition function is

f(x) ,

[
fr(r,p)
p+Aprr

]
(9.50)
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9.3 Measurement model

9.3.1 Motivations

The MEM-EKF* filter considers as measurement model the couple given by
the MEM and the pseudo-measurement model. One characteristic of the
correction law is that, given the sample of measurements

yk , {y(1)
k , . . . , y

(nk)
k }, (9.51)

the filtered estimates are computed by processing sequentially the nk mea-
surements in the sample. As a result, the MEM-EKF* at each sampling step
k performs nk single-measurement corrections (which consists in a kinematic
correction based directly on the measure y and in a shape correction based
on the pseudo-measurement Y relative to y).

The LO-MEM filter uses the same measurement model of the MEM-
EKF* filter to represent the measurements and the pseudo-measurements
but, in order to obtain a corrector with low computational burden, tries to
simplify the sequential strategy by replacing it with a single-shot strategy.

idea

Instead to consider the available measurements independently, the correc-
tion is performed, by using the BLUE equations, according to the mean
measurement and the mean pseudo-measurement1, defined respectively as

ȳk ,
1

nk

nk∑
i=1

y
(i)
k Y k ,

1

nk − 1

nk∑
i=1

Y
(i)
k . (9.52)

This idea is inspired to the correction strategy used by the GIW filter,
which choose to process the mean measure ȳ and the scatter matrix Y rather
than the single measurements individually.

As a result, at each time step k the LO-MEM filter performs only one sin-
gle measurement correction (which consists in a kinematic correction based
directly on the mean measure ȳ and in a shape correction based on the mean
pseudo-measurement Y ). In other terms, the LO-MEM corrector is char-
acterized by a constant computational cost, while the MEM-EKF* requires
a computational cost that grows with the number nk of available measure-
ments.

1the normalizing factor is nk − 1 rather than nk due the so-called Bessel correction,
which improves the estimation process (as will be shown in section*)
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9.3.2 Drawback

It should be noted that, despite the clear advantage of the low computation
cost, the LO-MEM corrector is less accurate than the MEM-EKF* because
in general the transformations

y
(i)
k , . . . , y

(i)
k 7→ ȳ

Y
(i)
k , . . . , Y

(i)
k 7→ Y

(9.53)

implies an inevitable loss of information.

9.3.3 Mean MEM

The MEM, according to the definition of the kinematic state used by the
Lambda:Omicron model, assumes the form

yk = Hrrk + S(pk)hk + vk (9.54)

where the obsevation matrix Hr is defined as

Hr ,
[
I2 02×N 02×N

]
(9.55)

now, by observing that in the sample each measurement, since are originated
by the same object, shares the same kinematic state rk and the same shape
state pk, the mean MEM is given by

ȳk ,
1

nk

nk∑
i=1

(
Hrrk + S(pk)h

(i)
k + v

(i)
k

)
= Hrrk +

1

nk

nk∑
i=1

(
S(pk)h

(i)
k + v

(i)
k

) (9.56)

9.3.4 Mean MEM distribution

In order to apply the BLUE equations, the moments ȳk|k−1, Σȳ, Σxȳ are
required. In this section the entire distribution pȳ(·) of ȳk is derived and
consequently the three moments ȳk|k−1, Σȳ, Σxȳ are extracted from pȳ(·).

Distribution

By considering the following moment-matched Gaussian approximations2

hk ∼ N (0, Rh)

rk ∼ N (r̂k|k−1, P
r
k|k−1)

(9.57)

2by definition, the multiplicative error hk is not Gaussian, while the kinematic state
rk is not Gaussian due to the non-linearity of the Lambda:Omicron motion model
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and by assuming that the covariance P pk|k−1 of pk is sufficiently small to

justify the following additional moment-matched Gaussian approximation3

S(pk)hk ∼ N (0, CI + CII) (9.58)

follows, for the elementary sum rule for Gaussian distributions, that the
mean MEM measurement ȳk is approximately distributed like

pȳk(ȳk) , N
(
ȳk;Hr r̂k|k−1, HrP

r
k|k−1H

′
r +

+CI + CII +Rv
nk

)
(9.59)

Moments

According to pȳk(·), the prediction ȳk|k−1 of ȳk and its covariance Σȳ are
respectively

ȳk|k−1 , Hr r̂k|k−1

Σȳ , HrP
r
k|k−1H

′
r +

CI + CII +Rv
nk

(9.60)

the cross-covariance Σxȳ can be computed via the definition

Σxȳ , E[x̃k ˜̄y′k] (9.61)

where

x̃k , xk − x̂k|k−1 =

[
rk − r̂k
pk − p̂k

]
,

[
r̃k|k−1

p̃k|k−1

]
˜̄yk , ȳk − ȳk|k−1 = Hrr̃k +

1

nk

nk∑
i=1

(
S(pk)h

(i)
k + v

(i)
k

) (9.62)

its easy to see that

Σxȳ =

[
P rk|k−1H

′
r

P prk|k−1H
′
r

]
= Pk|k−1H

′ (9.63)

where it is introduced the global observation matrix

H ,
[
Hr 02×(2NΛO+1)

]
(9.64)

3the idea behind this approximation is that, if pk is deterministic, i.e. P p
k|k−1

= 0

and pk = p̂k|k−1, then, according to the Gaussian approximation for hk, the distribution

of S(p̂k|k−1)hk is trivially N (0, S(p̂k|k−1)RhS(p̂k|k−1)′) = N (0, CI). In order to take

into account the (assumed to be small) covariance P p
k|k−1

≈ 0, the second factor CII is

included in the final approximation for the distribution of S(pk)hk



180 LO-MEM filter

9.3.5 Mean pseudo-measurement model

Likewise in the previous section, the distribution pY (·) and the moments
Y k|k−1, ΣY , ΣxY associated to the mean pseudo-measurement Y k are de-
rived in what follows in order to apply the BLUE equations.

Preliminary discussion

According to its definition, the mean pseudo-measurement Y k can be written
in the following form

Y k = F vec[Scov] (9.65)

where Scov is the so-called sample covariance, defined as

Scov ,
1

nk − 1

nk∑
i=1

(y
(i)
k − ȳk)(y

(i)
k − ȳk)′ (9.66)

in fact,

Y k ,
1

nk − 1

nk∑
i=1

Y
(i)
k

=
1

nk − 1

nk∑
i=1

F [(y
(i)
k − ȳk)⊗ (y

(i)
k − ȳk)]

=
1

nk − 1

nk∑
i=1

F vec
[
(y

(i)
k − ȳk)(y

(i)
k − ȳk)′

]
= F vec

[
1

nk − 1

nk∑
i=1

(y
(i)
k − ȳk)(y

(i)
k − ȳk)′

]
, F vec[Scov]

. (9.67)

In the Gaussian case holds the following famous result regarding the
sample covariance

Theorem 16. Let {y(i)}ni=1 be a sample of n IID p-variate measurements
distributed according to

y(i) ∼ N (µy,Σy > 0) i = 1, 2, . . . , n (9.68)

then

� the sample mean ȳ , 1
n

∑n
i=1 y

(i) follows the Gaussian distribution

pȳ(ȳ) = N (ȳ;µy,Σy) (9.69)
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� the sample covariance Scov , 1
nk−1

∑nk
i=1(y

(i)
k − ȳk)(y

(i)
k − ȳk)′ follows

the Wishart distribution

pScov
(Scov) =Wp

(
Scov;n− 1,

Σy
n− 1

)
(9.70)

� the sample mean ȳ and the sample covariance Scov are independently
distributed.

Distribution

In the MEM case, the sample is (approximately) Gaussian but not IID be-
cause each measurement shares the factor Hrr, which correlates the mea-
surements to each other. Despite this negative fact, the same factor Hrr is
also present in the sample mean and the correlation effect partially cancels
out. Hence thereom applys approximately to the actual case.

Since between the sample covariance Scov and the mean pseudo-measurement
Y there is a 1-to-1 relationship (which says that Y is nothing but more than
the vectorial representation of Scov), follows that the distribution of Y is
the same as the distribution of Scov, so the distribution of the mean pseudo-
measurement is approximately given by

pY (Y ) =W2

(
Scov ,

[
Y 1 Y 3

Y 3 Y 2

]
;n− 1,

Σy
n− 1

)
(9.71)

where Y = [Y 1 Y 2 Y 3]′.

Moments

According to the distribution pY (·) and the formulae for the Wishart mo-
ments, the moments Y k|k−1 and ΣY are respectively4

Y k|k−1 = F vec[E[Scov]]

= F vec

[
(nk − 1)

Σy
nk − 1

]
= F vec[Σy]

(9.72)

4The Bessel correction simplifies the expression of the prediction Y k|k−1. By con-

sidering the true mean pseudo-measurement 1
nk

∑nk
i=1 Y

(i)
k , the prediction would be

nk−1
nk

Fvec[Σy ] (instead of the simpler Fvec[Σy ])
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and

ΣY = Cov[Fvec[Scov]]

= F (Cov[vec[Scov]])F ′

= F

(
(nk − 1)(I4 +K)

(
Σy

nk − 1
⊗ Σy
nk − 1

))
F ′

= F

(
I4 +K

nk − 1
(Σy ⊗ Σy)

)
F ′

(9.73)

where K is the commutation matrix given.
In order to computate of the cross-covariance, start by observing that for

linearity

ΣxY =
1

nk − 1

nk∑
i=1

ΣxY =
nk

nk − 1
ΣxY (9.74)

now, the cross-covariance between x and Y can be computed approximately
as

ΣxY ≈ E

[
x̃k

(
∂g

∂x

∣∣∣∣
x̂k|k−1

x̃

)′]
(9.75)

by assuming that the Jacobian g
x̃ is independent from x̃ and by observing

that

E

[
∂g

∂x

∣∣∣∣
x̂k|k−1

]
=
[
E
[
∂g
∂r

∣∣
r̂k|k−1

]
E
[
∂g
∂p

∣∣
p̂k|k−1

]]
=
[
02×2 Mp̂

]︸ ︷︷ ︸
,Mx̂

(9.76)

follows the final expression

ΣxY = Pk|k−1

(
nk

nk − 1
Mx̂

)′
(9.77)

9.4 LO-MEM predictor

9.4.1 Extended Kalman predictor

The Lambda:Omicron motion model is not linear. The LO-MEM predictor
is thus defined as the following EKF predictor

x̂k+1|k , f(xk|k)

Pk+1|k , ĴxPk|kĴ
′
x +Q

(9.78)
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where

Ĵx ,
∂f(x)

∂x

∣∣∣∣
x̂k|k

(9.79)

the main problem, addressed in the next section, is to find the explicit ex-

pression of the motion Jacobian Jx ,
∂f(x)
∂x

9.4.2 Motion Jacobian

Start from the Jacobians of the non linear functions f
(i)
‖ and f

(i)
⊥ , which are

defined by

J
(i)
θ‖ ,

∂ f
(i)
‖

∂ θ
J

(i)
θ⊥ ,

∂f
(i)
⊥

∂ θ

J
(i)
λ‖ ,

∂ f
(i)
‖

∂ λ̃
J

(i)
λ⊥ ,

∂f
(i)
⊥

∂ λ̃

J
(i)
o‖ ,

∂ f
(i)
‖

∂ õ
J

(i)
o⊥ ,

∂f
(i)
⊥

∂ õ

(9.80)

then the equation in m is linearized near x̂k|k as follow

mk+1 = mk +

N∑
i=1

T i

i!

(
f̂

(i)
‖ + f̂

(i)
⊥

)
+

[
N∑
i=1

T i

i!

(
Ĵ

(i)
λ‖ + Ĵ

(i)
λ⊥

)]
︸ ︷︷ ︸

,Ĵλ

(λ̃k − λ̃k|k)

+

[
N∑
i=1

T i

i!

(
Ĵ

(i)
o‖ + Ĵ

(i)
o⊥

)]
︸ ︷︷ ︸

,Ĵo

(õk − õk|k) +

[
N∑
i=1

T i

i!

(
Ĵ

(i)
θ‖ + Ĵ

(i)
θ⊥

)]
︸ ︷︷ ︸

,Ĵθ

(θk − θk|k) +wm

(9.81)
where

f̂
(i)
‖ , f

(i)
‖ (x̂k|k) f̂

(i)
⊥ , f

(i)
‖ (x̂k|k) (9.82)

and

Ĵ
(i)
θ‖ ,

∂ f
(i)
‖

∂ θ

∣∣∣∣
x̂k|k

Ĵ
(i)
θ⊥ ,

∂f
(i)
⊥

∂ θ

∣∣∣∣
x̂k|k

Ĵ
(i)
λ‖ ,

∂ f
(i)
‖

∂ λ̃

∣∣∣∣
x̂k|k

Ĵ
(i)
λ⊥ ,

∂f
(i)
⊥

∂ λ̃

∣∣∣∣
x̂k|k

Ĵ
(i)
o‖ ,

∂ f
(i)
‖

∂ õ

∣∣∣∣
x̂k|k

Ĵ
(i)
o⊥ ,

∂f
(i)
⊥

∂ õ

∣∣∣∣
x̂k|k

. (9.83)
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Consequently,

rk+1 = f̂r + Ĵr(rk − rk|k) + Ĵrp(pk − pk|k) +wr

pk+1 = pk +Apr(rk − rk|k) +wp

(9.84)

where f̂r , fr(r̂k|k, p̂k|k) and

Ĵr ,

 I2 Jλ Jo
0Λ×2 Aλ 0Λ×O
0O×2 0O×Λ Ao


x̂k|k

Ĵrp ,

 Jθ 02×1 02×1

0Λ×1 0Λ×1 0Λ×1

0O×1 0O×1 0O×1


x̂k|k

(9.85)
In conclusion, the linearized form of the Lambda:Omicron model is

xk+1 = f(x̂k|k) + Ĵx(xk − x̂k|k) +w (9.86)

where Ĵx = Ĵx(x̂k|k) and the searched motion Jacobian is

Jx =

[
Jr Jrp
Apr I3

]
(9.87)

9.4.3 Basic factors and Jacobians

Due to the their implicit definitions, explicit formulae for the motion function
f(·) and for the motion Jacobian Jx are not yet found. In this section
this problem is solved by employing the results expressed by the special
decomposition of the motion functions.

Basic factors

The motion function f(·) requires the explicit expressions of the scalars k
(i)
‖

and k
(i)
⊥ , here called basic factors. A practical way compute such factors is

by using the recursion

k
(i+1)
‖ = k̇

(i)
‖ − ωk

(i)
⊥

k
(i+1)
⊥ = ωk

(i)
‖ + k̇

(i)
⊥

(9.88)

initialized with

k
(1)
‖ , v k

(1)
⊥ , 0 (9.89)
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Basic Jacobians

The motion Jacobian Jx requires the explicit expressions of the Jacobians.
Such Jacobians can be computed via the following practical formulae

Ĵ
(i)
θ‖ =

[
− sin θk|k
cos θk|k

]
k

(i)
‖ Ĵ

(i)
θ⊥ =

[
cos θk|k
sin θk|k

]
(−k(i)

⊥ )

Ĵ
(i)
λ‖ =

[
cos θk|k
sin θk|k

]
ĵ

(i)
λ‖ Ĵ

(i)
λ⊥ =

[
− sin θk|k
cos θk|k

]
ĵ

(i)
λ⊥

Ĵ
(i)
o‖ =

[
cos θk|k
sin θk|k

]
ĵ

(i)
o‖ Ĵ

(i)
o⊥ =

[
− sin θk|k
cos θk|k

]
ĵ

(i)
o⊥

. (9.90)

where are introduced the basic Jacobians

ĵ
(i)
λ‖ ,

∂k
(i)
λ‖

∂λ

∣∣∣∣
λk|k,ok|k

ĵ
(i)
λ⊥ ,

∂k
(i)
λ⊥
∂λ

∣∣∣∣
λk|k,ok|k

ĵ
(i)
o‖ ,

∂k
(i)
o‖

∂o

∣∣∣∣
λk|k,ok|k

ĵ
(i)
o⊥ ,

∂k
(i)
o⊥
∂o

∣∣∣∣
λk|k,ok|k

(9.91)

Explicit expressions

� initialisation i = 1: basic factors

k
(1)
‖ , v

k
(1)
⊥ , 0

(9.92)

basic Jacobians

j
(1)

‖λ̄ , 1

j
(1)
‖ō , 0

j
(1)

⊥λ̄ , 0

j
(1)
⊥ō , 0

(9.93)

� case i = 2: basic factors

k
(2)
‖ , v̇

k
(2)
⊥ , ωv

(9.94)
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basic Jacobians
j

(2)

‖λ̄ ,
[
0 1

]
j

(2)
‖ō , 0

j
(2)

⊥λ̄ ,
[
ωk|k 0

]
j

(2)
⊥ō , vk|k

(9.95)

� case i = 3: basic factors

k
(3)
‖ , v̈ − ω

2v

k
(3)
⊥ , 2ωv̇ + ω̇v

(9.96)

basic Jacobians

j
(3)

‖λ̄ ,
[
−ω2

k|k 0 1
]

j
(3)
‖ō ,

[
−2ωk|kvk|k 0

]
j

(3)

⊥λ̄ ,
[
ω̇k|k 2ωk|k 0

]
j

(3)
⊥ō ,

[
2v̇k|k vk|k

]
(9.97)

� case i = 4: basic factors

k
(4)
‖ ,

...
v − 3ωω̇v − 3ω2v̇

k
(4)
⊥ , 3ωv̈ + 3ω̇v̇ + ω̈v − ω3v

(9.98)

basic Jacobians

j
(4)

‖λ̄ ,
[
−3ωk|kω̇k|k −3ω2

k|k 0 1
]

j
(4)
‖ō ,

[
−3ω̇k|kvk|k − 6ωk|kv̇k|k −3ωk|kvk|k 0

]
j

(4)

⊥λ̄ ,
[
ω̈k|k − ω3

k|k 3ω̇k|k 3ωk|k
]

j
(4)
⊥ō ,

[
3v̈k|k − 3ω2

k|kvk|k 3v̇k|k vk|k
]

(9.99)

9.5 LO-MEM corrector

At each time step k + 1, the LO-MEM corrector consists in the following
BLUE operations

x̂k+1|k+1 = x̂k + ΣxȲΣ−1

Y (Yk+1 − Yk+1|k)

Pk+1|k+1 = Pk+1|k − ΣxȲΣ−1

Y Σ′
xȲ

(9.100)
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where the considered observation is

Y ,
[
ȳ′ Y

′
]′

(9.101)

and the relative moments are computed, according to the mean MEM and
the mean pseudo-measurement model, as follows

� prediction: the prediction Yk+1|k has the following structure

Yk+1|k =
[
ȳ′k+1|k Y

′
k+1|k

]′
(9.102)

;

� covariance: the covariance ΣY has the following structure

ΣY =

[
Σȳ ΣȳY = 0

· ΣY

]
(9.103)

The mixed term ΣȳY is zero because ȳ and Y are independently dis-
tributed;

� cross-covariance: the cross-covariance ΣxY has the following struc-
ture

ΣxY =
[
Σxȳ ΣxY

]
(9.104)

9.6 PHD implementation

Since the LO-MEM filter considers a non-linear motion model and a non-
linear measurement model, both the PHD predictor and corrector are defined
heuristically. The idea is to embed the estimates generated by the LO-MEM
filter in the Gaussian mixture defined by the GM-PHD filter.

9.6.1 Predictor

The state of a generic extended object is defined as

x ,
[
r′ p′

]′
(9.105)

and the considered predicted PHD is

Dk|k−1(x) = DB(x) +DS(x) (9.106)
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where the new born objects PHD DB(·) is

DB(x) =

νB∑
i=1

wBN (x;xB,i, PB,i) (9.107)

while the survived objects DS(·), assuming pS constant, is given by

DS(x) =

νk−1|k−1∑
i=1

wk|k−1,iN (x;xk|k−1,i, Pk|k−1,i)

wk|k−1,i , pS wk−1|k−1,i

xk|k−1,i , f(xk−1|k−1,i)

Pk−1|k−1,i , ĴxPk−1|k−1,iĴ
′
x +Q

(9.108)

where f(·) is the Lambda:Omicron motion function and Ĵx is its Jacobian
evaluated in x̂k−1|k−1,i

9.6.2 Corrector

The considered corrected PHD is

Dk|k(x) = DND(x) +
∑
P�y

∑
w∈P

DD(x;P,w) (9.109)

where

� assuming pD and λD constant, the non-detected objects PHD DND(·)
is

DND(x) =

νk|k−1∑
i=1

wk|k,iN (x;xk|k−1,i, Pk|k−1,i)

wk|k,i , [1− (1− exp(−λD)) pD]wk|k−1,i

(9.110)
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� the detected objects PHD DD(·;P,w) is given by

DD(x;P,w) =

νk|k−1∑
i=1

wP,w,ik|k N (x;xw,ik|k, P
w,i
k|k )

wP,w,ik|k , ωP
˜̀
w,i

dw

˜̀
w,i , pD exp(−λD)

(
λD

IC

)|w|
Lw,i

dw , δ1(|w|) +

νk|k−1∑
i=1

˜̀
w,i

ωP ,

∏
w∈P dw∑

P�y
∏

w∈P dw

(9.111)

where the cell likelihood and the corrected parameters are defined as
follows.

Cell likelihood

The cell likelihood is defined according to the model of the joint vector

Y ,
[
ȳ′ Y

′
]′

(9.112)

now consider the following facts:

� the model for ȳ is

pȳ|i(ȳ) , N (ȳ; ȳik|k−1,Σ
i
ȳ) (9.113)

where, according to the mean MEM moments,

ȳik|k−1 , Hr̂k|k−1,i

Σiȳ , HP
r,i
k|k−1H

′ +
CI,i + CII,i +Rv

|w|
(9.114)

and r̂k|k−1,i, P
r,i
k|k−1, CI,i, CII,i are moments relative to the predicted

object i. This model is reasonable if the covariance of pk|k−1,i is small:
in this case y is, with a good approximation, Gaussian;

� the model for Y is

pY |i(Y ) ,W2

(
Y ; |w| − 1,

Σiy
|w| − 1

)
(9.115)
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where, according to the pseudo-measurement model,

Σiy = HP r,ik|k−1H
′ + CI,i + CII,i +Rv (9.116)

then, by exploiting the fact that ȳ and Ȳ are independently distributed (due
to theorem (???)), the cell likelihood gets the explicit expression

Lw,i , pY|i(Y) = pȳ|i(ȳ)pY |i(Y )

= N (ȳ; ȳik|k−1,Σ
i
ȳ)W2(Y ; |w| − 1,Σiy)

(9.117)

Corrected parameters

The |P|·νk|k−1 corrected parameters xw,ik|k, Pw,i
k|k are computed by an ensamble

of |P| · νk|k−1 LO-MEM filters, where each filter performs the correction of
the predicted object i, which is characterized by the predicted parameters
xw,ik|k−1, Pw,i

k|k−1, according to the cell of measurements w.
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Simulations
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Chapter 10

Simulations

10.1 Summary

In this final chapter are shown the numerical results about two different
simulations modelling a naval tracking problem where different boats moves
in fixed sourveilled area (which is a square of [−1500, 1500]2 meters).

� simulation 1: in this simulation is considered a single boat that per-
forms an highly manuevering trajectory in the sourveilled area. The
trajectory is characterized by relevant variations of longitudinal speed
and steering speed;

� simulation 2: in this simulation are considered five different boats
that moves around the sourveilled area. In this simulation the number
of boats simultaneously present in the scene is a time varying quantity
because the boats can enter or leave the sourvelleid area.

In the first simulation are compared the LO-MEM filter, in its version
2:1-MEM, with the MEM-EKF* filter, in its version CT-NCV. In particular,
it is shown that the LO-MEM filter can achieve better performance than the
MEM-EKF* filter. In the second simulation is shown the effectiveness of the
PHD extesion of the LO-MEM filter in a multiobject scenario.

The GIW filter is not considered because it was already prooved that the
MEM-EKF* filter achieves better performance.

The interessed reader can find the source code, written in MATLAB, on
the GitHub page of the author.
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10.2 Simulation 1

10.2.1 Ground truth

motion equations

The trajectory of the tracked boat is given by the unicycle model

mk+1 = mk + T

[
cos θk
sin θk

]
uvk

θk+1 = θk + Tuωk

(10.1)

where uv and uω, seen as driving inputs, are the longitudinal velocity and
the steering speed of the boat. In order to define smooth uv and uω in a
simple manner, it is considered the following two additional equations

uvk+1 = uvk + Tuv̇k

uωk+1 = uωk + Tuω̇k
(10.2)

which allows to define uv and uω in terms of integrals of the longitudinal
acceleration uv̇ and the of the steering acceleration uω̇.

initial state

The initial kinematic state considered is the following

m0 ,
[
−562.5 −562.5

]′
(in meters)

θ0 ,
π

2
(in radiants)

v0 , 24 (in kilonodes / seconds)

ω0 , 0 (in radiants / seconds)

(10.3)

the dimensions (width and lenght) of the boat are respectively

l1 , 100 (in meters)

l2 , 10 (in meters)
(10.4)

input signals

The sampling interval considered is T = 1 second and the length of the
simulation is 180 seconds. The driving inputs uv̇k and uω̇k are defined as the
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Figure 10.1: Ground truth trajectory. At the ending point is shown the
ground truth ellipse representing the tracked boat.

following piece-wise constant signals

uv̇k ,


0.1 if 0 ≤ k < 60

0 if 60 ≤ k < 75

0.1 if 75 ≤ k < 95

0 if 95 ≤ k < 180

(in kilonodes / seconds2) (10.5)

uω̇k ,



−0.001 if 0 ≤ k < 60

0 if 60 ≤ k < 75

0.01 if 75 ≤ k < 95

−0.004 if 95 ≤ k < 125

−0.002 if 125 ≤ k < 180

(in radiants / seconds2) (10.6)
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measurement generation

The measurement equation employed is the MEM equation

y
(i)
k = mk + S(pk)h

(i)
k + v

(i)
k

h
(i)
k ∼ U(C0,1)

v
(i)
k ∼ N (0, Rv)

(10.7)

where mk and pk are the position and shape state of the tracked boat.

At each sampling instant k are generated 5 different measurements by
generating stochasticly 5 different multiplicative noises and measurement

noises {h(i)
k , v

(i)
k }5i=1.

The choosen measurement covariance is

Rv , diag(152, 152) (in meters2) (10.8)

At each sampling instant k no clutter measurements are generated.

10.2.2 PHD MEM-EKF* setup

PHD setup

Since in the actual simulation there is only one object that does not leave
the scene and since are not modelled blind spots in the sourveilled area, the
considered PHD parameters are the following

pD , 1 pS , 1 (10.9)

Since no additional objects enter in the scene during the simulation, the
new born object mixture is neglected.

Due to the fact that no clutter measurements are generated, it is consid-
ered

λC , 0 (10.10)
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MEM-EKF* setup

The filter is initialized with a mixture composed by only one component,
which is characterized by the following parameters

w0|0 , 1

x̂0|0 =



ξ̂0
η̂0

ˆ̇
ξ0
ˆ̇η0

ω̂0

θ̂0

l̂1,0
l̂2,0


,



−700
−700

0
0
0
π
3

50
25


P0|0 , diag (1000, 1000, 100, 100, 0.01, 0.01, 200, 100)

(10.11)

the considered process noise covariance is

Q , diag (100, 100, 0.01, 0.01, 0.00005, 0, 0.000001, 0.00000001) (10.12)

10.2.3 PHD LO-MEM setup

PHD setup

See the PHD setup of the previous PHD-MEM-EKF* filter.

LO-MEM setup

The filter is initialized with a mixture composed by only one component,
which is characterized by the following parameters

w0|0 , 1

x̂0|0 =



ξ̂0
η̂0

v̂0

ˆ̇v0

ω̂0

θ̂0

l̂1,0
l̂2,0


,



−700
−700

0
0
0
π
3

50
25


P0|0 , diag (1000, 1000, 100, 100, 0.01, 0.01, 200, 100)

(10.13)
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Figure 10.2: Initial condition. The grey ellipse represents the ground truth,
the blue ellipse represents the initialization of the MEM-EKF* filter, the red
ellipse represents the initialization of the 2:1-MEM filter

the considered process noise covariance is

Q , diag (0, 0, 0.01, 0.005, 0.00005, 0, 0.000001, 0.00000001) (10.14)

10.2.4 Error metric

At each sampling instant k, the performances of the two filters are measured
with the so-called Wasserstein distance between the ground truth ellipse and
the estimated ellipses generated by the filters.

The Wasserstein distance is a metric that measures the difference between
two ellipses E1 = (m1,Σ1), E2 = (m2,Σ2), where m1, m2 are the centers
and Σ1, Σ2 are the shape matrix of the ellipses.
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The square of the Wasserstein distance, which is measured in meters2, is
defined as

W 2(E1, E2) , ‖m1 −m2‖2 + tr

[
Σ1 + Σ2 − 2

√√
Σ1Σ2

√
Σ1

]
(10.15)

where
√

Σ1 is a matrix such that
√

Σ1

√
Σ1 = Σ1. The first term ‖m1 −m2‖2

takes into account the position error between the two ellipses, the second
term tr[· · · ] takes into account the misalignement and the differences in the
extensions of the two ellipses.

Let Eg,k, EMEM-EKF*,k, ELO-MEM,k be the ground truth ellipse, the es-
timated ellipse by the MEM-EKF* filter and the estimated ellipse by the
LO-MEM filter at time k. The performance indexes considered are

CWMEM-EKF* ,
180∑
k=0

W 2(Eg,k, EMEM-EKF*,k)

CWLO-MEM ,
180∑
k=0

W 2(Eg,k, ELO-MEM,k)

(10.16)

referred as cumulative Wasserstein errors.

10.2.5 Result

The cumulative Wasserstein errors produced by the two filters are respec-
tively

CWMEM-EKF* ≈ 5314

CWLO-MEM ≈ 3193
(10.17)

This result suggests that, in particular circumstances such as simulation
1, the LO-MEM filter can achieve better performance than the MEM-EKF*.

10.3 Simulation 2

10.3.1 Ground truth

motion equations

The 5 boats follow the same motion model defined in simulation 1.
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Figure 10.3: Time evolution of the Wasserstein errors generated by the two
filters.

initial states

The considered initial states are the following

x1
0 ,



−562.5
−562.5

24
0.05
π
2

100
10


x2

0 ,
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300
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24
−0.02
π
2

60
10


x3

0 ,



780
−300

24
0.05
2π
3

70
15


x4

0 ,



−300
−750

24
−0.03
−π2
80
20


x5

0 ,



600
1200
24
−0.01

4π
3

60
20


(10.18)

where xi0 denotes the initial state of boat i.
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Figure 10.4: Final result of the simulation. In grey is represented the ground
truth trajectory, in blue is represented the estimated trajectory generated
by the MEM-EKF* filter, in red is represented the estimated trajectory
generated by the 2:1-MEM filter.
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input signals

The considered sampling interval is T = 1 second and the length of the
simulation is 90 seconds. The driving inputs uv̇,ik , uω̇,ik of boat i are defined
as follows

uv̇,ik = uω̇,ik , 0 k = 0, 1, . . . , 89, i = 1, 2, 3, 4, 5 (10.19)

measurement generation

It is considered the same measurement model of simulation 1, with the fol-
lowing additional aspects:

� the number of measurements generated by a boat is Poisson with ex-
pected value λD , 5;

� clutter is included in the simulation. It is assumed that the num-
ber of clutter measurements is Poisson with expected value λC , 10.
The clutter measurements are assumed to be IID random variables
uniformly distributed over the entire scene, so that the true clutter
intensity is 10/15002.

10.3.2 PHD LO-MEM setup

PHD setup

The considered PHD parameters are

pD , 1 pD , 0.7 (10.20)
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The considered new born object PHD is composed by the following 4 com-
ponents

w1
B , 10−5

x1
B ,

[
−750 −750 0 0 0 π

4 60 15
]′

P 1
B , diag (100, 100, 15, 15, 0.1, 0.01, 1, 0.1)

w2
B , 10−5

x2
B ,

[
750 −750 0 0 0 3π

4 60 15
]′

P 2
B , diag (100, 100, 15, 15, 0.1, 0.01, 1, 0.1)

w3
B , 10−5

x3
B ,

[
750 750 0 0 0 5π

4 60 15
]′

P 3
B , diag (100, 100, 15, 15, 0.1, 0.01, 1, 0.1)

w4
B , 10−5

x4
B ,

[
−750 750 0 0 0 7π

4 60 15
]′

P 4
B , diag (100, 100, 15, 15, 0.1, 0.01, 1, 0.1)

(10.21)

The considered clutter intensity is

IC ,
10

15002
(10.22)

LO-MEM setup

The filter is initialized with the void initialization, i.e. the starting mixture
does not contain any components.

10.3.3 Results

The performance of the filter is qualitatively represented by the following
snapshots of the simulation. In such snapshots the ground truth ellipses are
drawn in grey, while the estimated ellipse are drawn in red. Moreover are
shown the measurements with the following convention:

� if the measurement is a detection, i.e. is generated by a boat, then it
is drawn as a yellow circle;

� if the measurement is a clutter measurement then it is drawn as a red
circle.
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Figure 10.5: Initial condition
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Figure 10.6: Simulation at time k = 20
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Figure 10.7: Simulation at time k = 40
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Figure 10.8: Simulation at time k = 60
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Figure 10.9: Simulation at time k = 90



Chapter 11

Conclusions and future work

The present work of thesis has dealt with the problem of Multiple Extended
Object Tracking (MEOT), i.e. the joint estimation of the kinematic state
and the shape state of an unknown and time varying number of extended
objects. Such a problem involves two sources of difficulty:

� 1) at any given sampling instant, likewise their states, it is not known
the number of objects present in the surveilled scene;

� 2) at any given sampling instant, an object can produce more than
one measurement.

In order to deal with the first difficulty, the concept of random finite set
was introduced. Thanks to the tools provided by FISST, i.e. the multiobject
calculus and its generalization, a feasible RFS algorithm, i.e. the PHD filter,
was obtained to solve the MEOT problem. More precisely, two different
versions of the PHD filter were discussed:

� standard PHD filter: this type of filter can handle the simultaneous
estimation of the kinematic states of an unknown and time varying
number of point objects, i.e. objects that can generate no more than
one measurement per time step;

� extended object PHD filter: this type of filter is the natural ex-
tension of the standard PHD filter, where the objects are considered
extended, i.e. the simplifying assumption that an object can generate
no more than one measurement per time step no longer holds.

Both the standard PHD filter and the extended object PHD filter are
not natively designed to estimate the shape states of the objects present in

209
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the surveilled scene. In order to get a PHD filter capable to address this
limitation, the problem of the shape estimation of a single extended object
was discussed in detail, leading to two different algorithms:

� GIW filter: this type of filter is the simplest solution to the joint es-
timation of the kinematic and shape states of a single extended object.
As a result, the GIW filter is computationally cheap but achieves poor
performance in practical applications. The drawback is a consequence
of the underlying simplifying assumptions. For example such filter, in
order to get closed-form formulae, assumes that the covariance of the
kinematic state is proportional to the extension (i.e., the area of the
surface) of the object. Consequently, the bigger is the tracked object,
the smaller is the precision of kinematic state estimation.

� MEM-EKF* filter: this type of filter solves some issues of the GIW
filter, such as, for example, the just mentioned problem arising from
the proportionality between the covariance of the kinematic state and
the extension of the object. The MEM-EKF* filter is more accurate
than the GIW filter, but it is characterized by an heavier computational
burden. In general, the gain in the estimation accuracy justifies the
additional computational cost, hence, the MEM-EKF* filter has to be
preferred to the GIW filter.

For both filters, the PHD implementations was devised, leading to two
algorithms that, finally, effectively solve the MEOT problem, i.e. they can
estimate the kinematic state and the shape state of an unknown and time
varying number of multiple extended objects.

The final topic of the present work was an attempt to improve the PHD
filter based on the MEM-EKF* filter, i.e. the so-called LO-MEM filter. The
present work leaves some open problems, which are discussed below and left
for future work.

� Sampling interval problem: the LO-MEM filter is numerically un-
stable when the considered sampling interval is large. In particular,
numerical simulations show that, when the sampling time is large, of-
ten the associated covariance matrix to the corrected estimate of the
shape loses positive-definiteness;

� Cell likelihood verification: in the present work a new model for
the cell likelihood, which is the kernel of a PHD filter, is proposed.
However, the new model was not numerically tested, so that it is not
clear if it is effective;
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� Longitudinal velocity assumption: the LO-MEM motion model
makes the strong assumption that the tracked object cannot move
along the lateral direction. Due to this assumption, the LO-MEM
filter can achieve better performance than MEM-EKF* but, clearly, in
a real scenario this assumption does not hold. An interesting prob-
lem is to extend the LO-MEM filter in a way such that the limiting
assumption can be avoided.
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